红外光显微镜的技术原理

在技术上使用红外光与使用可见光相比较,差异并不像使用紫外光那样大。对于直到波长为1500nm的红外光来说,一般的标准物镜仍然是可以用的。当然,在波长超过1000nm时,像的质量就开始受到损害,这主要是由于球面差。既就是使用专门设计用于红外光的消色差物镜,在波长超过1200nm时,色差也会变得明显起来。当红外光的波长达到3000nm时,玻璃就变得不透明了,这时必须使用象碘化铊这样的特殊材料制作透镜,但是使用这种材料要制造出在足够宽的波长范围内的矫正透镜仍然是困难的。对于被长超过1500nm范围的红外光,经常使用反射物镜或反射一折射物镜。在理论上,在一个完全的反射显微镜中可以用波长直到20μm的红外光形成物体的像,然而要制造较高孔径的反射物镜却是相当困难的。对于取决于孔径的分辨力来说,小孔径是更大的缺点,而且分辨力会随着波长的增大而相应地减小。因此,既就是使用近红外光,在分辨力上的损失也是十分明显的。在红外光显微镜中通常使用白炽灯照......阅读全文

红外光显微镜技术原理

在技术上使用红外光与使用可见光相比较,差异并不像使用紫外光那样大。对于直到波长为1500nm的红外光来说,一般的标准物镜仍然是可以用的。当然,在波长超过1000nm时,像的质量就开始受到损害,这主要是由于球面差。既就是使用专门设计用于红外光的消色差物镜,在波长超过1200nm时,色差也会变得明显起来

红外光显微镜的技术原理

在技术上使用红外光与使用可见光相比较,差异并不像使用紫外光那样大。对于直到波长为1500nm的红外光来说,一般的标准物镜仍然是可以用的。当然,在波长超过1000nm时,像的质量就开始受到损害,这主要是由于球面差。既就是使用专门设计用于红外光的消色差物镜,在波长超过1200nm时,色差也会变得明显起来

红外光显微镜的技术原理

在技术上使用红外光与使用可见光相比较,差异并不像使用紫外光那样大。对于直到波长为1500nm的红外光来说,一般的标准物镜仍然是可以用的。当然,在波长超过1000nm时,像的质量就开始受到损害,这主要是由于球面差。既就是使用专门设计用于红外光的消色差物镜,在波长超过1200nm时,色差也会变得明显起来

红外光显微镜的技术原理

在技术上使用红外光与使用可见光相比较,差异并不像使用紫外光那样大。对于直到波长为1500nm的红外光来说,一般的标准物镜仍然是可以用的。当然,在波长超过1000nm时,像的质量就开始受到损害,这主要是由于球面差。既就是使用专门设计用于红外光的消色差物镜,在波长超过1200nm时,色差也会变得明显起来

红外光显微镜的技术原理介绍

  在技术上使用红外光与使用可见光相比较,差异并不像使用紫外光那样大。对于直到波长为1500nm的红外光来说,一般的标准物镜仍然是可以用的。当然,在波长超过1000nm时,像的质量就开始受到损害,这主要是由于球面差。既就是使用专门设计用于红外光的消色差物镜,在波长超过1200nm时,色差也会变得明显

显微镜技术原理详解

显微镜技术原理详解        微生物个体微小,用肉眼直接观察不到,必须借助显微镜才能观察到他的个体形态和细胞结构。在蛋白质结构等所需对物质的微观结构进行观察的研究中也都会用到各种显微镜。现有的各种显微镜基本上都是由物镜和目镜组成,目镜的焦距很短,目镜的焦距很长,目镜的作用是得到物体放大的实像,目

倒置生物显微镜的技术原理

倒置生物显微镜是生物显微镜的分支,用来观察生物切片、生物细胞、细菌以及活体组织培养、流质沉淀等的观察和研究,同时可以观察其他透明或者半透明物体以及粉末、细小颗粒等物体。比较普通生物显微镜:适合用于观察、记录附着于培养皿底部或悬浮于培养基中的活体物质,在食品检验、水质鉴定、晶体结构分析及化学反应沉淀物

荧光显微镜技术的原理

 如图2所示,在普通的荧光显微镜下,我们很难分清红色、绿色两种荧光分子标记的不同蛋白(如(a)(c)(e)所示);那图中的(b)(d)(f)又是如何实现红色、绿色两种蛋白分开呢?该图为纳观生物有限公司拍摄,我们就以该公司研发的SRiS超高分辨率成像系统为例,给大家介绍下随机光学重构显微技术的原理。 

共聚焦显微镜技术原理

SURF技术的功能原理        NanoFocus共聚焦显微镜包括LED光源、旋转多针孔盘、带有压电驱动器的物镜和CCD相机。LED源通过多针孔盘(MPD)和物镜聚焦到样品表面上,从而反射光。反射光通过MPD的针孔减小到聚焦的部分,这落在CCD相机上。来自传统光学显微镜的图像包含清晰和模糊的细

红外光谱的原理

红外光谱的原理当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的

红外光谱的原理

红外光谱的原理当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的

红外光谱的原理

红外光谱的原理:当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间

红外光谱的原理

红外光谱的原理:当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间

红外光谱的原理

红外光谱的原理:当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间

偏光显微镜的原理和技术特点

偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。(1)偏光显微镜的特点将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)

视频显微镜的原理和技术特点

将传统的显微镜与摄象系统,显示器或者电脑相结合,达到对被测物体的放大观察的目的。最早的雏形应该是相机型显微镜,将显微镜下得到的图像通过小孔成象的原理,投影到感光照片上,从而得到图片。或者直接将照相机与显微镜对接,拍摄图片。随着CCD摄像机的兴起,显微镜可以通过其将实时图像转移到电视机或者监视器上,直

激光共聚扫描显微镜的技术原理

  从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。  共焦显微镜[Confocal Laser Scanning Microscope(CLSM或LSCM)]在反射光的光路上加上了一块半反半透镜(dichr

实验分析方法红外光谱技术对产地鉴定的原理

红外光是一种介于可见光区和微波区之间的电磁波,包括近红外光(NIR, 0.78~2.5μm)、中红外光(MIR,2.5~50μm)和远红外光(FIR,50~1000μm)。红外光谱中振动峰的数目、位置、形状和强度与被测物质的组成、结构、性质有密切联系。研究表明,不同样品的红外光谱包含有不同的信息,即

红外光显微镜介绍

  红外光显微镜是一种利用波长在800nm到20μm范围内的红外光作为像的形成者,用来观察某些不透明物体的显微镜。这种显微镜在生物学中的用途远远比不上紫外光显微镜。  技术原理  在技术上使用红外光与使用可见光相比较,差异并不像使用紫外光那样大。对于直到波长为1500nm的红外光来说,一般的标准物镜

红外光谱技术

这些年来医学有了很大的发展,越来越多的不治之症变得有可能。随着人类社会的不断发展,人们对于健康有了很大的关注,其中药用安全也是人们常常谈到的话题。对于咱们中国人来说,中医是我们特有的医疗方式。目前,“指纹图谱”被作为中药现代化的一个代表,炒作得热闹非常。内行人都知道,色谱、光谱、波谱这三种方法均可用

红外光产生的原理

1 红外光的定义红外光是英国科学家赫歇尔1800年在实验室中发现的。它是波长比红光长的电磁波,具有明显的热效应,使人能感觉到而看不见。科学家发现,一定波长的光(可见光或不可见光)照射到某些金属等材料表面时,金属等材料会发射电子流,称为光电效应。红外光,又叫红外线,是波长比可见光要长的电磁波(光),波

红外光产生的原理

1 红外光的定义红外光是英国科学家赫歇尔1800年在实验室中发现的。它是波长比红光长的电磁波,具有明显的热效应,使人能感觉到而看不见。科学家发现,一定波长的光(可见光或不可见光)照射到某些金属等材料表面时,金属等材料会发射电子流,称为光电效应。红外光,又叫红外线,是波长比可见光要长的电磁波(光),波

红外光谱技术测定乳品的原理以及影响因素视频分享

  红外光谱分析原理  在整个电磁波范围内,包含了紫外区,可见光区,红外区,微波区四大主要区域。其中400nm到700 nm属于可见光区域。位于可见光和微波之间的光谱为红外光谱,波长为0.75~100µm,其中0.75~2.5µm为近红外,2.5~50µm为中红外,50~100µm为远红外。由于有机

近红外光谱仪的分析原理及技术优势

  分析原理  近红外光(Near Infrared,NIR)是介于可见光(VIS)和中红外光(MIR)之间的电磁波, ASTM 定义的近红外光谱区的波长范围为 780~2526nm (12820~3959cm1),习惯上又将近红外区划分为近红外短波(780~1100nm)和近红外长波(1100~2

荧光显微镜的原理和技术特点

在萤光显微镜上,必须在标本的照明光中,选择出特定波长的激发光,以产生荧光,然后必须在激发光和荧光混合的光线中,单把荧光分离出来以供观察。因此,在选择特定波长中,滤光镜系统,成为极其重要的角色。荧光显微镜原理:(A) 光源:光源辐射出各种波长的光(以紫外至红外)。(B) 激励滤光源:透过能使标本产生萤

共焦显微镜的原理及成像技术

从一个点光源发射的探测光通过透镜聚焦到被观测物体上,如果物体恰在焦点上,那么反射光通过原透镜应当汇聚回到光源,这就是所谓的共聚焦,简称共焦。其意义是:通过移动透镜系统可以对一个半透明的物体进行三维扫描。共聚焦显微镜能提供无比准确的三维成像,以及对亚细胞结构和动力学过程的准确测试。共焦显微镜在反射光的

红外光显微镜的功能介绍

红外光显微镜是一种利用波长在800nm到20μm范围内的红外光作为像的形成者,用来观察某些不透明物体的显微镜。这种显微镜在生物学中的用途远远比不上紫外光显微镜。

荧光显微镜的技术和拉曼光谱技术原理

  环境水中石油类污染物的含量是反映水质的指标之一,本文采用三波长定量测试水中油含量,样品测试方便,数据准确。环境中水中的石油类来自工业废水和生活污水的污染。油类物质在水面形成油膜,影响了空气和水的气体交换;分散于水中以及吸附于颗粒上或以乳化状态存在于水中的油,被微生物分解时,将消耗水中溶氧,容易使

红外光谱工作原理

直接用红外光分光当然也可以,最早的红外光谱仪就是这样的,但是这样的红外光谱仪采集的效率很低,而且信噪比也不高,后来逐渐被傅立叶变换红外光谱仪做取代。红外光谱仪一般分为两类,一种是光栅扫描的,就是直接用红外光分光。目前很少使用了;另一种是迈克尔逊干涉仪扫描的,称为傅立叶变换红外光谱,这是目前最广泛使用

荧光显微镜技术原理和方法

)训练目的    学习荧光显微镜的使用;了解荧光显微镜技术原理和方法。2)实验材料    生物素标记的一dUTP(Biotin-dUTP)或地高辛标记的duUTP(Digoxingening—11一dullP)1 nmol/μL,TdT酶(25 U/μL),反应缓冲液,洗涤缓冲液,异硫氰酸荧光素(F