什么是LUC基因

LUC基因指报告基因,是一个分子生物学概念,它是指一类在细胞、组织/器官或个体处于特定情况下会表达并使得他们产生易于检测、且实验材料原本不会产生的性状的基因。作为报告基因,在遗传选择和筛选检测方面必须具有以下几个条件:已被克隆和全序列已测定;表达产物在受体细胞中本不存在,即无背景,在被转染的细胞中无相似的内源性表达产物;其表达产物能进行定量测定。可通过报告基因的表达,研究蛋白质与蛋白质之间的相互作用。双杂交体系是由报告基因转录调控区、报告基因及一对可以相互作用的杂合反式作用因子组成。......阅读全文

什么是LUC基因

LUC基因指报告基因,是一个分子生物学概念,它是指一类在细胞、组织/器官或个体处于特定情况下会表达并使得他们产生易于检测、且实验材料原本不会产生的性状的基因。作为报告基因,在遗传选择和筛选检测方面必须具有以下几个条件:已被克隆和全序列已测定;表达产物在受体细胞中本不存在,即无背景,在被转染的细胞中无

双荧光LUC波长名称

萤火虫荧光素酶。双荧光LUC是基于荧光素酶的发光原理,形成了双荧光素酶报告基因检测系统。该波长名称为萤火虫荧光素酶,由于传统荧光染料的发射波长在400-800nm之间,以及肝脏等组织的强吸收和高背景荧光的特性,双光子显微成像在成像深度和信噪比方面尚存不足。

双荧光LUC波长名称

萤火虫荧光素酶。双荧光LUC是基于荧光素酶的发光原理,形成了双荧光素酶报告基因检测系统。该波长名称为萤火虫荧光素酶,由于传统荧光染料的发射波长在400-800nm之间,以及肝脏等组织的强吸收和高背景荧光的特性,双光子显微成像在成像深度和信噪比方面尚存不足。

luc/ren比值的意义

Luc/ren比值是指光合成作用中产生的氧气与消耗氧气的比率。光合作用是植物生长和生命活动的基础,通过光合作用,植物能够将太阳能转化为化学能,产生氧气和有机物质,并且消耗二氧化碳和水。Luc/ren比值是评估光合作用效率的重要指标。当光合作用效率高时,Luc/ren比值越高,表示单位时间内植物产生的

报告基因实验——植物提取物中LUC活性的检测

实验材料植物组织试剂、试剂盒裂解液萤光素酶分析缓冲液仪器、耗材离心机实验步骤一、完整组织1. 液氮速冻植物组织(5~50 mg),研磨成粉末状。2. 100~400 ul 裂解液室温重悬,组织匀浆。3. 16000 g,4℃ 离心 15 min,弃掉破碎的细胞。4. 检测提取物中的蛋白质浓度。5.

双荧光素luc不表达

双荧光素luc不表达有多种原因,实验过程中的每一个步骤都可能导致双荧光素luc不表达。如果目的基因载体没有成功转移到受体细胞,或者受体细胞没有成活,以及实验过程中出现其他物质抑制了双荧光素luc的表达等等,都有可能导致双荧光素luc不表达。基于荧光素酶(Luciferase)的发光原理,形成了双荧光

双荧光素luc不表达

双荧光素luc不表达有多种原因,实验过程中的每一个步骤都可能导致双荧光素luc不表达。如果目的基因载体没有成功转移到受体细胞,或者受体细胞没有成活,以及实验过程中出现其他物质抑制了双荧光素luc的表达等等,都有可能导致双荧光素luc不表达。基于荧光素酶(Luciferase)的发光原理,形成了双荧光

双荧光素luc不表达

双荧光素luc不表达有多种原因,实验过程中的每一个步骤都可能导致双荧光素luc不表达。如果目的基因载体没有成功转移到受体细胞,或者受体细胞没有成活,以及实验过程中出现其他物质抑制了双荧光素luc的表达等等,都有可能导致双荧光素luc不表达。基于荧光素酶(Luciferase)的发光原理,形成了双荧光

荧光素酶互补(Luc)实验

【导入】基于荧光素酶(Luciferase)的发光原理,形成了双荧光素酶报告基因检测系统。该系统包括萤火虫荧光素酶(Firefly luciferase)和海参荧光素酶(Renilla luciferase)。两者可与各自的底物发生氧化作用产生生物荧光,产生的荧光值即表示两种酶的表达量多少。图片来源

报告基因实验——利用冷型-CCD-像机进行-LUC-的活体检测

实验材料LUC试剂、试剂盒D- 萤光素水溶液仪器、耗材液氮冷却相机实验步骤对于萤光素酶的检测来说,需要解决荧光素渗透进入活体组织这一问题 [7]。多数情况下,用荧光素溶液简单地喷洒植物就可以解决,但是一些组织,如发育后期的种子不能吸收荧光素,需要产生伤口(见 注 27 ) 以利于底物进入 [52, 

上海生科院揭示等位遗传调控机制

  5月14日,国际学术期刊Cell Reports在线发表了中国科学院上海生命科学研究院植物逆境生物学研究中心朱健康研究组题为Involvement of multiple gene silencing pathways in a paramutation-like phenomenon in A

荧光素酶的作用原理及应用

荧光素酶(luciferase)是自然界中能够产生生物荧光的酶的总称。荧光素酶可以催化荧光素氧化成氧化荧光素,在荧光素氧化的过程中,会发出生物荧光。然后可以通过荧光测定仪测定荧光素氧化过程中释放的生物荧光。荧光素和荧光素酶这一生物发光体系,可以极其灵敏、高效地检测基因的表达,是检测转录因子与目的基因

研究发现植物核孔蛋白在响应ABA信号与盐胁迫中的作用

  12月12日,中国科学院逆境生物学研究中心朱健康研究组和普渡大学博士后祝英方的研究成果,以An Arabidopsis Nucleoporin NUP85 modulates plant responses to ABA and salt stress为题,在线发表在PLOS Genetics上

报告基因的特点和作用

理想的报告基因通常具备如下基本要求:①、受体细胞中不存在相应内源等位基因的活性;②、它的产物是唯一的,且不会损害受体细胞;③、具有快速、廉价、灵敏、定量和可重复性的检测特性。常用的报告基因有氯霉素乙酰转移酶基因(cat)、荧光素酶基因(luc)、β-葡萄糖苷酸酶基因(gus)等。

荧光素酶报告基因用品的选择与应用(二)

       如果您的实验需要构建双荧光素酶报告载体,我们有下列产品供您挑选:        1.我们有双荧光素酶报告载体产品  产品名称 货号 规格 产品描述 pEZX-FR01 ZX001 10ug 包

使用生物发光成像实时监测体内葡萄糖摄取

在活体成像技术中,一些新的光学探针及光调控技术的出现,拓展了该技术的应用领域。上期给大家分享了检测活性氧的探针,能够在活体水平监测局部炎症中活性氧自由基(ROS)的释放,以及基于肿瘤微环境中高ROS水平介导的自发光动力效应,实现肿瘤诊疗一体化。 今天给大家分享一篇2019年发表在《Nature Me

IVIS-视角-|-使用生物发光成像实时监测体内葡萄糖摄取

  在活体成像技术中,一些新的光学探针及光调控技术的出现,拓展了该技术的应用领域。上期给大家分享了检测活性氧的探针,能够在活体水平监测局部炎症中活性氧自由基(ROS)的释放,以及基于肿瘤微环境中高ROS水平介导的自发光动力效应,实现肿瘤诊疗一体化。   今天给大家分享一篇2019年发表在《Na

荧光素酶基因标记肿瘤细胞的实验步骤

哺乳动物生物发光,一般是将Firefly luciferase基因(由554个氨基酸构成,约50KD)即荧光素酶基因整合到预期观察的细胞染色体DNA上以表达荧光素酶,培养出能稳定表达荧光素酶的细胞株,当细胞分裂、转移、分化时, 荧光素酶也会得到持续稳定的表达。将标记好的细胞接种到实验动物

活体成像皮下成瘤实验操作方法

Materials:MDA-MB-231-Luc and HCT116-Luc cellsMice: 2 subcutaneous HCT116-Luc tumor-bearing female BALB/c nude mice;4 naïve female BALB/c nude mice;Art

标记基因的分类

选择基因和报告基因都可以看做是标记基因,都起着标记目的基因是否成功转化的作用,但是它们又有着各自的特点。选择基因(又称选择标记基因),主要是一类编码可使抗生素或除草剂失活的蛋白酶基因,这种基因在执行其选择功能时,通常存在检测慢(蛋白酶作用需要时间)、依赖外界筛选压力(如抗生素、除草剂)等缺陷。而报告

关于Promega萤光素酶技术发光史里程碑介绍

  1990年12月,Promega首次提出萤火虫萤光素酶(Luc)作为一种新兴报告基因技术的应用可能性。当时的人们认为,萤火虫萤光素酶具备的生物发光特性、极高的灵敏度和快速简单的检测流程等特点,可能会对分子生物学家的研究产生重要的影响。几个月后,第一代萤火虫萤光素酶报告基因载体和检测试剂在Prom

简述标记基因的不同分类

  引入“选择基因”和“报告基因”的概念  选择基因和报告基因都可以看做是标记基因,都起着标记目的基因是否成功转化的作用,但是它们又有着各自的特点。  选择基因(又称选择标记基因),主要是一类编码可使抗生素或除草剂失活的蛋白酶基因,这种基因在执行其选择功能时,通常存在检测慢(蛋白酶作用需要时间)、依

关于标记基因的分类介绍

  引入“选择基因”和“报告基因”的概念  选择基因和报告基因都可以看做是标记基因,都起着标记目的基因是否成功转化的作用,但是它们又有着各自的特点。  选择基因(又称选择标记基因),主要是一类编码可使抗生素或除草剂失活的蛋白酶基因,这种基因在执行其选择功能时,通常存在检测慢(蛋白酶作用需要时间)、依

常用报道基因的功能对比

道基因的对比报道基因作用方式优点缺点氯霉素乙酰基转移酶(CAT;细菌)CAT通过使乙酰基与抗生素共价连接的方式来解除氯霉素的毒性,报道基因实验通常检测n-丁酰基的一半从辅助因子n-丁酰辅酶A转移到具有放射活性的氯霉素上,被修饰的氯霉素的迁移率发生改变,并且能够掺入有机溶剂。没有内源活性;可使用自动化

研究发现肿瘤血管新生的新分子标记Apj

  10月30日,国际学术期刊Cell Reports 在线发表了中国科学院生物化学与细胞生物学研究所周斌研究组的科研成果“Apj+ vessels drive tumor growth and represent a tractable therapeutic target”。该研究利用在Apj-

研究发现调控植物抗铝毒转录因子STOP1稳定性的机制

  12月17日,国际学术期刊《美国国家科学院院刊》(PNAS)在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心黄朝锋研究组完成的题为F-box protein RAE1 regulates the stability of the aluminum-res

呼吸疾病国家重点实验室发明流感病毒示踪研究新方法

  根据世界卫生组织(WHO)估计,全球范围内,季节性流感每年可导致300~500 万人患病,并导致25~50万例患者死亡。季节性流感常发生于高危人群(年幼、年长、慢性病患者),其中发达国家中死亡病例常发生在65岁以上患者。此外,禽源流感病毒如H5N1、H7N9 等跨越种属屏障感染人类,具有

研究发现调控植物抗铝毒转录因子STOP1稳定性的机制

  12月17日,国际学术期刊《美国国家科学院院刊》(PNAS)在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所上海植物逆境生物学研究中心黄朝锋研究组完成的题为F-box protein RAE1 regulates the stability of the aluminum-res

分子植物卓越中心揭示新的RdDM通路的分子机制

  DNA甲基化是一种保守的表观遗传修饰,对基因表达和基因组稳定性具有重要意义。RNA介导的DNA甲基化(植物RdDM途径)是植物小RNA参与表观调控的重要方式,其需要两个植物特有的RNA聚合酶——Pol IV(大亚基NRPD1为催化核心)和Pol V(大亚基NRPE1为催化核心)以及大量的辅助蛋白

研究人员或发现I型糖尿病最早生物标记物

  一项最新研究表明,美国科学家或许发现了I型糖尿病最早的生物标志物。这一发现将可以帮助延缓该疾病的发病时间。  I型糖尿病,多发生在儿童和青少年,是一种由于免疫系统破坏胰腺中β细胞,造成胰岛素绝对不足的自身免疫性疾病。而且I型糖尿病发病隐匿,待确诊时,该疾病已潜伏发作一段时间了。如何早期发现高风险