多药耐药细菌的临床表现
1.肠杆菌科感染 (1)常见菌种:以肺炎克雷伯菌最常见,其次为大肠埃希菌等。 (2)感染危险因素:包括患者原发病情危重、以往抗菌药物的使用、入住重症监护室、实质脏器或血液移植、外科手术及导管、引流管留置等。多药耐药肠杆菌科细菌可较长时间寄殖于肠道(达数月),导致耐药细菌在院内传播,有部分携带菌可造成临床感染。 (3)常见感染类型:肺部感染、尿路感染、血流感染等。 2. 不动杆菌感染 (1)常见菌种:鲍曼不动杆菌。 (2)感染危险因素:包括全身麻醉、入住重症监护室及前期多种抗菌药物的使用等。 (3)常见感染类型:多药耐药不动杆菌感染最常见于医院获得性肺炎,主要见于重症监护室机械通气患者。鲍曼不动杆菌血流感染常继发于肺、腹腔感染,以及导管留置感染等。血培养鲍曼不动杆菌阳性时应及时寻找原发感染灶及可能的迁徙病灶。鲍曼不动杆菌皮肤软组织感染多发生于有糖尿病等基础疾病、有手术史或外伤史等患者。 3. 铜绿假单胞菌感染 ......阅读全文
多药耐药细菌的临床表现
1.肠杆菌科感染 (1)常见菌种:以肺炎克雷伯菌最常见,其次为大肠埃希菌等。 (2)感染危险因素:包括患者原发病情危重、以往抗菌药物的使用、入住重症监护室、实质脏器或血液移植、外科手术及导管、引流管留置等。多药耐药肠杆菌科细菌可较长时间寄殖于肠道(达数月),导致耐药细菌在院内传播,有部分携带
多药耐药细菌的临床表现
1.肠杆菌科感染 (1)常见菌种:以肺炎克雷伯菌最常见,其次为大肠埃希菌等。 (2)感染危险因素:包括患者原发病情危重、以往抗菌药物的使用、入住重症监护室、实质脏器或血液移植、外科手术及导管、引流管留置等。多药耐药肠杆菌科细菌可较长时间寄殖于肠道(达数月),导致耐药细菌在院内传播,有部分携带
简述多药耐药细菌的耐药机制
多药耐药性(MDR)系指同时对多种常用抗微生物药物发生的耐药性,主要机制是外排膜泵基因突变,其次是外膜渗透性的改变和产生超广谱酶。最多见的有革兰阳性菌的多药耐药性金黄色葡萄球菌(MDR-MRSA)和耐万古霉素肠球菌(VRE)及肺炎链球菌,革兰阴性菌如肠杆菌科的肺炎克雷伯菌、大肠埃希菌以及常在重症
多药耐药细菌的预防
1.严格管理多药耐药细菌感染患者(及带菌者),辟专室、专区进行隔离。 2.由训练有素的专职医护人员对多药耐药细菌感染者进行医疗护理,发现为带菌者时暂调离工作岗位。 3.检查每一位患者前必须用消毒液洗净双手,并按需要更换口罩、白大衣或手套。 4.每日严格进行病室的环境消毒。 5.高度重视抗
关于多药耐药细菌的简介
多药耐药细菌是指有多药耐药性的病原菌,也可以翻译成多药耐药性、多重耐药性,其定义为一种微生物对三类(比如氨基糖苷类、大环内酯类、β-内酰胺类)或三类以上不同机制抗菌药物同时耐药,而不是同一类三种。P-resisitence为泛耐菌株,对几乎所有类抗菌药物耐药,如泛耐不动杆菌,对氨基糖苷类、青霉素
预防多药耐药细菌的相关介绍
1.严格管理多药耐药细菌感染患者(及带菌者),辟专室、专区进行隔离。 2.由训练有素的专职医护人员对多药耐药细菌感染者进行医疗护理,发现为带菌者时暂调离工作岗位。 3.检查每一位患者前必须用消毒液洗净双手,并按需要更换口罩、白大衣或手套。 4.每日严格进行病室的环境消毒。 5.高度重视抗
肿瘤细胞的多药耐药
肿瘤细胞的多药耐药可以分为天然耐药(在化疗开始时就存在的耐药性)和获得性耐药(在化疗过程中由一种化疗药物诱导产生)。
多向耐药(pdr)和多药耐药(mdr)的区别
MDR(multi-drug resistant)——多重耐药细菌对常用抗菌药物主要分类的3类或以上耐药。PDR(pandrug resistant)——全耐药细菌对所有分类的常用抗菌药物全部耐药。具有上述性质的细菌,都可以称之为''超级细菌''(superbacte
多向耐药(pdr)和多药耐药(mdr)的区别
MDR(multi-drug resistant)——多重耐药细菌对常用抗菌药物主要分类的3类或以上耐药。PDR(pandrug resistant)——全耐药细菌对所有分类的常用抗菌药物全部耐药。具有上述性质的细菌,都可以称之为''超级细菌''(superbacte
肿瘤多药耐药性介绍
肿瘤是机体遗传和环境致癌因素共同作用,引起遗传物质DNA损伤、突变,同时伴有多个癌基因激活和肿瘤抑制以近失活,是正常细胞不断增生、转化所形成的新生物。肿瘤的发生是一个长期、多阶段、多基因改变积累的过程,具有基因控制和多因素调节的复杂性。肿瘤多药耐药(multidrugresistance, MDR)
关于多药耐药性的概述
多药耐药性是导致抗感染药物治疗和肿瘤化疗失败的重要原因之一,2010年出现的“超级细菌”也是多药耐药性的一种。 肿瘤的发病率及其死亡率呈逐年上升趋势,美国癌症协会估计,90%以上肿瘤患者的死亡在不同程度上受到耐药影响[1]。肿瘤耐药的产生可分为原发性耐药和获得性耐药,根据肿瘤细胞的耐药特点,其
关于多药耐药性的基本介绍
肿瘤是机体遗传和环境致癌因素共同作用,引起遗传物质DNA损伤、突变,同时伴有多个癌基因激活和肿瘤抑制以近失活,是正常细胞不断增生、转化所形成的新生物。肿瘤的发生是一个长期、多阶段、多基因改变积累的过程,具有基因控制和多因素调节的复杂性。国内外研究表明:肿瘤多药耐药(multidrugresist
肿瘤细胞多药耐药的产生机制
1、 MDR基因及P-糖蛋白(P-glycoprotein, P-gp)MDR基因在人类有二种:MDR1和MDR2,其中MDR1与肿瘤的多药耐药有关,MDR2的功能不清楚,但MDR1和MDR2基因序列具有较高的同源性。人类MDR1基因位于第7号染色体长臂上,含有28个外显子,内含子与外显子交界符合经
多药耐药性产生的原因和治疗
原因目前认为多药耐药的发生与多种因素有关,如多药耐药基因(MDR1)及其编码的糖蛋白(P-GP)介导的耐药,多药耐药相关蛋白(MRP)、肺耐药蛋白(LRP)表达增加,谷胱甘肽转移酶(GST)活性增强,DNA修复和复制酶、DNA拓朴酶活性改变和钙离子浓度的改变等。多药耐药性的产生是由于细胞解除药物活性
概述肿瘤细胞多药耐药的产生机制
1、 MDR基因及P-糖蛋白(P-glycoprotein, P-gp) MDR基因在人类有二种:MDR1和MDR2,其中MDR1与肿瘤的多药耐药有关,MDR2的功能不清楚,但MDR1和MDR2基因序列具有较高的同源性。人类MDR1基因位于第7号染色体长臂上,含有28个外显子,内含子与外显子交
概述中药逆转肿瘤多药耐药性
目前多数化学药逆转剂往往只针对单一的耐药机制,且逆转剂本身不良反应较大,制约着临床的使用。中医药治疗恶性肿瘤有其独特的优势,在临床上亦取得了可喜的成绩,越来越多的中药抗癌药物正在被挖掘、被究、被使用。中药治疗疾病具有多途径、多环节、多靶点的特点,能明显提高化疗药物对肿瘤的细胞毒作用。目前中医药逆
逆转肿瘤细胞多药耐药研究获进展
P-糖蛋白(P-gp/ABCB1)是一类典型的多药耐药转运蛋白,可识别和促进肿瘤细胞的药物外排,限制了药物的疗效。先前眼发现磷脂酰肌醇-3-激酶(PI3K)的110α和110β亚单位是抑制P-gp介导的肿瘤多药耐药的新靶点;BAY-1082439作为PI3K 110α和110β亚单位的特异性抑制
细菌耐药机理及其耐药细菌的检测与临床
全球面临主要耐药问题 ? MRS(Methicilln-Resistant Stapylococci) 耐甲氧西林葡萄球菌包括MRSA,MRSE等。 ? VIA(Vancomycin-Intermediate Staphyococcus Aurus) 万古霉素中介的金葡菌 ? VRE(Vanc
多药耐药性的产生的原因和治疗
一、原因 目前认为多药耐药的发生与多种因素有关,如多药耐药基因(MDR1)及其编码的糖蛋白(P-GP)介导的耐药,多药耐药相关蛋白(MRP)、肺耐药蛋白(LRP)表达增加,谷胱甘肽转移酶(GST)活性增强,DNA修复和复制酶、DNA拓朴酶活性改变和钙离子浓度的改变等。 多药耐药性的产生是由于
多药耐药基因编码蛋白(P170)的表达
实验步骤 展开
多药耐药基因编码蛋白(P170)的表达
实验步骤展开
多药耐药基因编码蛋白(P170)的表达
实验步骤 展开
细菌耐药的几个重要概念及常见细菌的天然耐药
交叉耐药:病原体对某种药物耐药后,对于结构近似或作用性质相同的药物也可显示耐药性;即同样的耐药机制影响到同一类药物中的几种抗生素。例如,庆大霉素耐药的葡萄球菌对氨基糖苷类所有抗生素耐药。协同耐药:同一细菌的不同耐药机制相互影响到不同类药物中的几种抗生素。例如,对β内酰胺类抗生素耐药的肠杆菌科细菌对氨
DNA的化学检测项目介绍多药耐药(MDR)基因检测
多药耐药(MDR)基因检测介绍: 多药耐药(MDR)基因编码P-糖蛋白(P-170),该蛋白位于细胞膜上,有药物泵作用,将进入细胞的药物泵出细胞外而使细胞产生耐药。MDR阳性表示各种癌症的多药耐药。多药耐药(MDR)基因检测正常值: 正常范围:阴性。多药耐药(MDR)基因检测临床意义: 1.判
一个可能使多药耐药肿瘤脆弱的“弱点”
我们的发现“解释了为什么许多现有疗法对某些肿瘤不起作用,同时也发现了这些耐药癌症的弱点,”奥斯卡·费尔南德斯-卡佩蒂罗解释道,他是CNIO基因组不稳定小组的负责人,也是这项研究的主要作者。“我们现在知道,使用现有的药物可以利用这一弱点。”正如研究显示的那样,FBXW7基因的失活突变“降低了对绝大多数
简述耐药细菌的危害
耐药细菌和敏感细菌在致病性方面差异不大,细菌获得耐药性并不改变其致病能力,一般也不会产生新的感染类型,最主要的挑战在于细菌获得耐药后,治疗困难,对感染者治疗有效率降低、病死率增加、医疗费用会大幅上涨。 [1] 抗生素是人类对抗细菌感染的有效手段。细菌产生耐药性使原本有效的抗生素的治疗效果降
细菌耐药表型的检测
β-内酰胺酶检测 β-内酰胺酶(β-lactamase)是细菌产生的可水解β-内酰胺环抗生素的酶。β-内酰胺酶的产生是细菌对(β-内酰胺类)抗菌药物耐药最常见的机制,广泛地涉及到许多社区获得性感染和医院内感染的重要病原菌,在各种耐药机制中占80%。 β-内酰胺酶是由多种酶组成的酶家族,通
细菌的主要耐药机制
1.产生灭活抗生素的各种酶1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的
什么是多耐药、泛耐药和全耐药?
“多耐药”是multi-drug resistant的中文翻译,简称“MDR”,指细菌对3类或3类以上的常用抗菌药同时耐药,有时也叫多重耐药。目前临床常见病原菌几乎都是多耐药菌。“泛耐药”是extensively drug resistant的中文翻译,简称“XDR”,指细菌对常用抗菌药几乎全部(除
无害细菌与耐药细菌之间的竞争
科研人员报告说,由肠道原生的一种细菌产生的信息素能够杀死同种细菌的耐多药菌株。耐多药肠球菌是医院获得性感染的主要原因,这种细菌在抗生素破坏肠道原生细菌之后在肠道定植。粪肠球菌(E. faecalis)V583耐药菌株在其基因组中有许多可移动遗传元件,这可能妨碍它在缺少抗生素的条件下与原生细菌竞