概述肿瘤细胞多药耐药的产生机制

1、 MDR基因及P-糖蛋白(P-glycoprotein, P-gp) MDR基因在人类有二种:MDR1和MDR2,其中MDR1与肿瘤的多药耐药有关,MDR2的功能不清楚,但MDR1和MDR2基因序列具有较高的同源性。人类MDR1基因位于第7号染色体长臂上,含有28个外显子,内含子与外显子交界符合经典的APG配对,全长为4.5kb,含有一个开放读框,编码1280个氨基酸多肽,经糖基化后形成170kU的P-gp。它属于ATP结合盒转运蛋白超家族成员之一,由两个同源部分组成,每个部分都包含6个疏水跨膜区和1个具有高度保守ATP结合位点的亲水区,亲水区可能含有2个核苷酸结合位点,而疏水区则含有多个与MDR有关的药物结合位点。P-gp还具有能量依赖性“药泵”功能,其能将细胞内带阳性电荷的亲脂类化疗药物逆浓度泵至细胞外,使得细胞内化疗药物达不到有效作用浓度而产生耐药性。这种由P-gp介导的多药耐药称为典型多药耐药。 何杨等研究发......阅读全文

概述肿瘤细胞多药耐药的产生机制

  1、 MDR基因及P-糖蛋白(P-glycoprotein, P-gp)  MDR基因在人类有二种:MDR1和MDR2,其中MDR1与肿瘤的多药耐药有关,MDR2的功能不清楚,但MDR1和MDR2基因序列具有较高的同源性。人类MDR1基因位于第7号染色体长臂上,含有28个外显子,内含子与外显子交

肿瘤细胞多药耐药的产生机制

1、 MDR基因及P-糖蛋白(P-glycoprotein, P-gp)MDR基因在人类有二种:MDR1和MDR2,其中MDR1与肿瘤的多药耐药有关,MDR2的功能不清楚,但MDR1和MDR2基因序列具有较高的同源性。人类MDR1基因位于第7号染色体长臂上,含有28个外显子,内含子与外显子交界符合经

肿瘤细胞的多药耐药

肿瘤细胞的多药耐药可以分为天然耐药(在化疗开始时就存在的耐药性)和获得性耐药(在化疗过程中由一种化疗药物诱导产生)。

概述中药逆转肿瘤多药耐药性

  目前多数化学药逆转剂往往只针对单一的耐药机制,且逆转剂本身不良反应较大,制约着临床的使用。中医药治疗恶性肿瘤有其独特的优势,在临床上亦取得了可喜的成绩,越来越多的中药抗癌药物正在被挖掘、被究、被使用。中药治疗疾病具有多途径、多环节、多靶点的特点,能明显提高化疗药物对肿瘤的细胞毒作用。目前中医药逆

简述多药耐药细菌的耐药机制

  多药耐药性(MDR)系指同时对多种常用抗微生物药物发生的耐药性,主要机制是外排膜泵基因突变,其次是外膜渗透性的改变和产生超广谱酶。最多见的有革兰阳性菌的多药耐药性金黄色葡萄球菌(MDR-MRSA)和耐万古霉素肠球菌(VRE)及肺炎链球菌,革兰阴性菌如肠杆菌科的肺炎克雷伯菌、大肠埃希菌以及常在重症

逆转肿瘤细胞多药耐药研究获进展

  P-糖蛋白(P-gp/ABCB1)是一类典型的多药耐药转运蛋白,可识别和促进肿瘤细胞的药物外排,限制了药物的疗效。先前眼发现磷脂酰肌醇-3-激酶(PI3K)的110α和110β亚单位是抑制P-gp介导的肿瘤多药耐药的新靶点;BAY-1082439作为PI3K 110α和110β亚单位的特异性抑制

​肿瘤多药耐药性介绍

肿瘤是机体遗传和环境致癌因素共同作用,引起遗传物质DNA损伤、突变,同时伴有多个癌基因激活和肿瘤抑制以近失活,是正常细胞不断增生、转化所形成的新生物。肿瘤的发生是一个长期、多阶段、多基因改变积累的过程,具有基因控制和多因素调节的复杂性。肿瘤多药耐药(multidrugresistance, MDR)

关于多药耐药性的概述

  多药耐药性是导致抗感染药物治疗和肿瘤化疗失败的重要原因之一,2010年出现的“超级细菌”也是多药耐药性的一种。  肿瘤的发病率及其死亡率呈逐年上升趋势,美国癌症协会估计,90%以上肿瘤患者的死亡在不同程度上受到耐药影响[1]。肿瘤耐药的产生可分为原发性耐药和获得性耐药,根据肿瘤细胞的耐药特点,其

多药耐药性产生的原因和治疗

原因目前认为多药耐药的发生与多种因素有关,如多药耐药基因(MDR1)及其编码的糖蛋白(P-GP)介导的耐药,多药耐药相关蛋白(MRP)、肺耐药蛋白(LRP)表达增加,谷胱甘肽转移酶(GST)活性增强,DNA修复和复制酶、DNA拓朴酶活性改变和钙离子浓度的改变等。多药耐药性的产生是由于细胞解除药物活性

多药耐药性的产生的原因和治疗

  一、原因  目前认为多药耐药的发生与多种因素有关,如多药耐药基因(MDR1)及其编码的糖蛋白(P-GP)介导的耐药,多药耐药相关蛋白(MRP)、肺耐药蛋白(LRP)表达增加,谷胱甘肽转移酶(GST)活性增强,DNA修复和复制酶、DNA拓朴酶活性改变和钙离子浓度的改变等。  多药耐药性的产生是由于

Science子刊:韩国新研究揭示癌细胞多药耐药机制

  韩国科学技术研究院(KAIST)的研究人员已经确定了对一线化疗的获得性耐药转移到二线靶向治疗的机制,这种机制导致了癌症耐药的"多米诺效应"。他们的研究发表在近日的《Science Advances》上,该研究提出了一种新策略,用于改善对抗癌药物产生耐药性的患者的癌症治疗的二线疗法。  对癌症药物

多药耐药肿瘤非特异性发生机制研究中获进展

  化疗是癌症治疗的主要途径之一,但其往往伴随着肿瘤耐药现象的出现,并最终出现多药耐药而使绝大多数药物失效,治疗效果大大降低。经过长期探索,研究人员已揭示出众多的耐药现象发生机制,其中最广为人知的是化疗药物对于耐药蛋白,即腺苷三磷酸结合盒转运蛋白(ABC转运蛋白)的诱导作用,使其高表达并泵出化疗药物

一个可能使多药耐药肿瘤脆弱的“弱点”

我们的发现“解释了为什么许多现有疗法对某些肿瘤不起作用,同时也发现了这些耐药癌症的弱点,”奥斯卡·费尔南德斯-卡佩蒂罗解释道,他是CNIO基因组不稳定小组的负责人,也是这项研究的主要作者。“我们现在知道,使用现有的药物可以利用这一弱点。”正如研究显示的那样,FBXW7基因的失活突变“降低了对绝大多数

Nature报道肿瘤细胞耐药新机制

  有一种“臭名昭著”的蛋白质,能够将化疗药物从癌细胞中“泵”出来,还能阻止药物到达中枢神经系统。范德堡大学医学中心的研究人员最近绘制了一副这名“罪犯”“犯罪”时的构象变化。  P-糖蛋白是一种,ATP结合盒(ABC)转运蛋白。ABC转运蛋白是一个膜内在蛋白超家族。它将ATP水解,释放ATP分子中储

Cell子刊:揭开肿瘤细胞的耐药机制

  大约一半的肿瘤都缺失p53基因,它有助于健康细胞防止基因突变。这些肿瘤当中有许多会对化疗药物产生耐药性,化疗药物通过破坏细胞的DNA来杀死它们。  现在,麻省理工学院(MIT)的癌症生物学家已经发现了这一现象是如何发生的:当p53缺失时,一个备份系统会接管,刺激癌细胞继续分裂,即使当它们遭受了广

中科院研究发现超声给药或可逆转肿瘤多药耐药

  12月17日,记者从中科院深圳先进技术研究院获悉,该院医工所郑海荣研究组对脂质体—微泡复合物携载化疗药物阿霉素,在超声激励下对多药耐药型乳腺癌的逆转作用及机制进行探讨并取得进展,相关成果在线发表于《控释杂志》。   该研究对于发展新型超声给药及治疗技术具有重要价值。其研究表明:载药微泡复合物联

先进院超声给药逆转肿瘤多药耐药研究取得新进展

  最新发布的2014年1月国际学术期刊《控释杂志》(Journal of Controlled Release)发表了中国科学院深圳先进技术研究院生物医学与健康工程研究所郑海荣研究组的最新超声给药成果:脂质体-微泡复合物携载化疗药物阿霉素在超声激励下对多药耐药型乳腺癌的逆转作用及机制探讨。

多向耐药(pdr)和多药耐药(mdr)的区别

MDR(multi-drug resistant)——多重耐药细菌对常用抗菌药物主要分类的3类或以上耐药。PDR(pandrug resistant)——全耐药细菌对所有分类的常用抗菌药物全部耐药。具有上述性质的细菌,都可以称之为''超级细菌''(superbacte

多向耐药(pdr)和多药耐药(mdr)的区别

MDR(multi-drug resistant)——多重耐药细菌对常用抗菌药物主要分类的3类或以上耐药。PDR(pandrug resistant)——全耐药细菌对所有分类的常用抗菌药物全部耐药。具有上述性质的细菌,都可以称之为''超级细菌''(superbacte

关于多药耐药细菌的简介

  多药耐药细菌是指有多药耐药性的病原菌,也可以翻译成多药耐药性、多重耐药性,其定义为一种微生物对三类(比如氨基糖苷类、大环内酯类、β-内酰胺类)或三类以上不同机制抗菌药物同时耐药,而不是同一类三种。P-resisitence为泛耐菌株,对几乎所有类抗菌药物耐药,如泛耐不动杆菌,对氨基糖苷类、青霉素

中国科大发现克服肿瘤多药耐药新方法

  6月26日,国际学术期刊《德国应用化学》在线发表了中国科学技术大学化学与材料科学学院教授梁高林课题组与生命科学学院教授张华凤课题组的合作研究成果,文章标题为Intracellular Self-Assembly of Taxol Nanoparticles for Overcoming Mult

细菌耐药性与耐药机制概述

1.产生一种或多种水解酶、钝化酶和修饰酶2.抗菌药物作用靶位改变,包括青霉素结合蛋白位点、DNA解旋酶、DNA拓扑异构酶Ⅳ的改变等3.抗菌药物渗透障碍,包括细菌生物被膜形成和通道蛋白丢失4.药物的主动转运系统亢进上述四种耐药机制中,第一、二种耐药机制具有专一性,第三、四种耐药机制不具有专一性。

肿瘤抗原的产生机制

机体产生肿瘤抗原的可能机制为:①基因突变;②细胞癌变过程中使原本不表达的基因被激活;③抗原合成过程的某些环节发生异常(如糖基化异常导致蛋白质特殊降解产物的产生);④胚胎时期抗原或分化抗原的异常、异位表达;⑤某些基因产物尤其是信号转导分子的过度表达;⑥外源性基因(如病毒基因)的表达。

预防多药耐药细菌的相关介绍

  1.严格管理多药耐药细菌感染患者(及带菌者),辟专室、专区进行隔离。  2.由训练有素的专职医护人员对多药耐药细菌感染者进行医疗护理,发现为带菌者时暂调离工作岗位。  3.检查每一位患者前必须用消毒液洗净双手,并按需要更换口罩、白大衣或手套。  4.每日严格进行病室的环境消毒。  5.高度重视抗

多药耐药细菌的临床表现

  1.肠杆菌科感染  (1)常见菌种:以肺炎克雷伯菌最常见,其次为大肠埃希菌等。  (2)感染危险因素:包括患者原发病情危重、以往抗菌药物的使用、入住重症监护室、实质脏器或血液移植、外科手术及导管、引流管留置等。多药耐药肠杆菌科细菌可较长时间寄殖于肠道(达数月),导致耐药细菌在院内传播,有部分携带

关于多药耐药性的基本介绍

  肿瘤是机体遗传和环境致癌因素共同作用,引起遗传物质DNA损伤、突变,同时伴有多个癌基因激活和肿瘤抑制以近失活,是正常细胞不断增生、转化所形成的新生物。肿瘤的发生是一个长期、多阶段、多基因改变积累的过程,具有基因控制和多因素调节的复杂性。国内外研究表明:肿瘤多药耐药(multidrugresist

P糖蛋白介导的抗肿瘤多药耐药调控剂研究中获进展

  肿瘤多药耐药性(multidrug resistance, MDR)是目前化学治疗失败的主要原因,导致了超过90%患者肿瘤治疗的失败,P-gp是目前已知最重要的MDR相关蛋白靶点。在肿瘤治疗中,随着耐药性的产生,患者所需药物剂量持续增加,对正常组织和细胞造成极大伤害。因此科学家们一直致力于寻找以

我国学者揭示OVAAL在肿瘤细胞产生耐药性中发挥的功能

  11月26日,中国科学技术大学生命科学与医学部、中国科学院天然免疫与慢性疾病重点实验室和合肥微尺度物质科学国家研究中心教授吴缅研究组与澳大利亚纽卡斯尔大学研究员金雷合作,在国际学术期刊《美国国家科学院院刊》(PNAS)上在线发表题为Dual functions for OVAAL in init

碳青霉烯类的耐药性及产生机制

  新的抗菌药物出现,总是伴随着细菌耐药性的产生,虽然刚开始使用时,细菌对碳青霉烯类的耐药性相当低,对常见病原菌的敏感率相当高,但碳青霉烯类与其他β-内酰胺类一样,在临床应用后即出现耐药菌株。亚胺培南在临床上已应用多年,对其耐药的菌株有:黄单孢菌、粪肠球菌和耐甲氧青霉素葡萄球菌。对亚胺培南耐药的绿脓

细菌耐药性的产生机制及检测方法

一、细菌耐药性和产生机制1、细菌耐药性的概念:细菌的耐药性是指致病微生物对于抗菌药物作用的耐受性和对抗性。它是抗菌药物、细菌本身及环境共同作用的结果。它可分为天然耐药和获得性耐药,前者通过染色体DNA突变而致,后者大多是由质粒、噬菌体及其他遗传物质携带外来DNA片段导致的耐药性的产生。 2、细菌耐药