太阳光谱能量是怎么分布的

太阳光谱的波长范围很宽,但是辐射能的大小按波长的分配却是不均匀的,能量最大的区域在可见光部分,在波长460nm(0.46μm)附近,辐射能从最大值处向长波方向减弱较慢,向短波方向减弱较快,0.2~2.6μm这一波段的能量,几乎代表了太阳辐射的全部能量。......阅读全文

太阳光谱能量是怎么分布的

太阳光谱的波长范围很宽,但是辐射能的大小按波长的分配却是不均匀的,能量最大的区域在可见光部分,在波长460nm(0.46μm)附近,辐射能从最大值处向长波方向减弱较慢,向短波方向减弱较快,0.2~2.6μm这一波段的能量,几乎代表了太阳辐射的全部能量。

太阳光能量光谱分布

匿名用户2013-07-12可见光占百分之43.红外光占百分之48.3,紫外光占8.7。所以说贴防紫外线膜没什么影响

太阳光光谱功率能量分布图

正好我前段时间做了个相关工作,找到个图。太阳能光谱分布: (a)大气层以外;(b)在海平面;(c)在5900K时的黑体辐射

太阳光谱的功率分布

太阳是能量最强、天然稳定的自然辐射源,其中心温度为1.5*10^7K,压强约为10^16Pa。内部发生由氢转换成氦的聚核反应。太阳聚核反应释放出巨大能量,其总辐射功率为3.8*10^26W,其中被地球接收的部分约为1.7*10^17W。太阳的辐射能量用太阳常数表示,太阳常数是在平均日地距离上、在地球

发射光谱是怎么产生的

处于高能级的原子或分子在向较低能级跃迁时产生辐射,将多余的能量发射出去形成的光谱.要使原子或分子处于较高能级就要供给它能量这叫激发.被激发的处于较高能级的原子、分子向低能级跃迁放出频率为n的光子在原子光谱的研究中多采用发射光谱,例如氢原子处在正常状态时电子是在离核最近的n=1的可能轨道上运动,这时它

荧光光谱是怎么产生的

原子荧光光谱(AFS):典型原子荧光检测过程是以氢化物/冷蒸气发生方式实现样品的导入,氩氢扩散火焰原子化器实现被测元素的原子化,自由原子被空心阴极灯激发后发射的原子荧光,以无色散光路被 光 电 倍 增 管 接 收,获 得 原 子 荧 光 信 号。

光波频率越高,能量越大,波长越短,物理是怎么解释的

因为光速是一定的,用V表示光速,f表示频率,入表示波长,则有公式如下:V=入f,因为光速恒定,f越高,则波长入越短。而光波的能量完全取决于光源发出光的瞬间所能提供出的能量,能量越大,自然频率越高,波长越短。光波具有波粒二象性(是指某物质同时具备波的特质及粒子的特质):也就是说从微观来看,由光子组成,

原子发射光谱是怎么产生的

原子发射光谱的产生原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出现,即得到发射光谱(线光谱)。

光谱仪的信噪比是怎么定义的

看有的资料说,光谱仪的信噪比是将信号接近饱和时候的值作为信号,将没有信号输入时的值作为噪声,二者相除就是信噪比。但是用这个定义,我所用的仪器信噪比都比实际标称的低了不止一个量级。例如有一款光谱仪,12位的,最大值是4096,我不输入任何信号的时候测的值是100个计数,也就是说信噪比是40?可是标称的

物料的粒度分布按体积按数量是怎么理解的

数量分布,是指以颗粒的个数为单位进行累积;体积分布就是以颗粒的体积为单位进行累积计算的。1000个1微米的颗粒在体积上相当于1个10微米的体积,可想而知,两者的差距有多大

物料的粒度分布按体积按数量是怎么理解的

粒度分布是按照颗粒粒径作出的分布曲线吧,激光粒度仪会给出分布曲线,横坐标是粒度大小

物料的粒度分布按体积按数量是怎么理解的

数量分布,是指以颗粒的个数为单位进行累积;体积分布就是以颗粒的体积为单位进行累积计算的。1000个1微米的颗粒在体积上相当于1个10微米的体积,可想而知,两者的差距有多大

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

紫外可见光谱是怎么产生的

紫外可见光谱起源于紫外可见光与物质的相互作用.你提问中的光谱应该属于吸收光谱,它是由分子的能级不连续引起的.当入射光子的能量恰好等于分子的某一能级差时,该光子就可能被分子吸收,大量光子照射时,一部分被吸收就表现为总体光的强度减弱.光源:紫外区一般用氢灯或氘灯可见区用钨灯或钨卤素灯

原子发射光谱是怎么回事

原子发射光谱法,是利用被激发原子发出的辐射线形成的光谱与标准光谱比较,识别物质中含有何种物质的分析方法。用电弧、火花等危机发源,使气态原子或离子受激发后发射出紫外和可见区域的辐射。某种元素原子只能产生某些波长的谱线,根据光谱图中是否出现某些特征谱线,可判断是否存在某种元素。(1)使试样在外界能量的作

原子发射光谱是怎么回事

原子发射光谱法(AES),是利用物质在热激发或电激发下,每种元素的原子或离子发射特征光谱来判断物质的组成,而进行元素的定性与定量分析的方法。原子发射光谱法是根据处于激发态的待测元素原子回到基态时发射的特征谱线对待测元素进行分析的方法。原子发射光谱法包括了三个主要的过程,即:由光源提供能量使样品蒸发、

原子发射光谱是怎么回事

原子发射光谱法,是利用被激发原子发出的辐射线形成的光谱与标准光谱比较,识别物质中含有何种物质的分析方法。用电弧、火花等危机发源,使气态原子或离子受激发后发射出紫外和可见区域的辐射。某种元素原子只能产生某些波长的谱线,根据光谱图中是否出现某些特征谱线,可判断是否存在某种元素。(1)使试样在外界能量的作

什么是能量转换

能量的存在有很多种形式:动能,内能,势能,等等当能量从一种形式变成另一种形式时,我们说能量发生了转换。譬如球从高处落下,球静止于高空时,具有重力势能,落下的过程中,重力势能减少,动能增加,我们说这是重力势能转化为动能。又如双手摩擦,会发热。我们手的机械能转化为内能。能量转换包括两种:转化和转移。如两

什么是能量转化

功是能量转化的量度。物体做功的过程是能量转化的过程,如起重机把重物吊起,对重物做功的过程就是电能转化为机械能的过程。你把一个物体从一楼提到三楼,对物体做功,你身体中的化学能消耗一部分转化为物体的机械能。1.功的概念:(1)定义:物体受到力的作用,并在力的方向上发生一段位移,就说力对物体做了功。(2)

什么是能量转换

能量的存在有很多种形式:动能,内能,势能,等等当能量从一种形式变成另一种形式时,我们说能量发生了转换。譬如球从高处落下,球静止于高空时,具有重力势能,落下的过程中,重力势能减少,动能增加,我们说这是重力势能转化为动能。又如双手摩擦,会发热。我们手的机械能转化为内能。能量转换包括两种:转化和转移。如两

原子吸收光谱的背景是怎么产生的

  原吸收光谱扣除背景通三类: 连续光源校背景 空阴极灯自吸效应校 背景塞曼效应校背景  (1)连续光源校背景  待测元素波紫外波段(180-400nm)采用氘灯或氘空阴 极灯波见光及近红外波段采用钨或碘钨灯现代 AAS 仪器应用较广泛种 校背景其原理用待测元素 HCL 辐射作品光束测量总吸收信号用

原子吸收光谱的背景是怎么产生的

  原吸收光谱扣除背景通三类: 连续光源校背景 空阴极灯自吸效应校 背景塞曼效应校背景  (1)连续光源校背景  待测元素波紫外波段(180-400nm)采用氘灯或氘空阴 极灯波见光及近红外波段采用钨或碘钨灯现代 AAS 仪器应用较广泛种 校背景其原理用待测元素 HCL 辐射作品光束测量总吸收信号用

原子吸收光谱的背景是怎么产生的

原子吸收光谱是包含各种波长的复合光投射到原子上后得到的光谱,只有原子的特征谱线位置的光被吸收因而出现暗线,未被吸收的光仍然存在,形成明亮背景.

原子吸收光谱的背景是怎么产生的

  原吸收光谱扣除背景通三类: 连续光源校背景 空阴极灯自吸效应校 背景塞曼效应校背景  (1)连续光源校背景  待测元素波紫外波段(180-400nm)采用氘灯或氘空阴 极灯波见光及近红外波段采用钨或碘钨灯现代 AAS 仪器应用较广泛种 校背景其原理用待测元素 HCL 辐射作品光束测量总吸收信号用

太阳光谱是线状谱还是连续谱

太阳的光谱是连续光谱中有着数以万计的吸收线和发射线连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱.炽热的固体、液体和高压气体的发射光谱是连续光谱.例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱.

吸收能量,是电子吸收能量而跃迁,还是原子吸收能量

都有可能,一般来说都是外层电子跃迁,这样的跃迁一般涉及红外、可见光、紫外线这种能量较低的光子。但内层电子也可以跃迁,这涉及x射线这种能量较高的光子。原子核也能跃迁,这涉及到伽马射线这种能量很高的光子,一般只有核反应里才能遇到。