Antpedia LOGO WIKI资讯

关于γ氨酪酸植物中代谢途径的介绍

在植物体中有两条GABA合成和转化途径:一条是谷氨酸经谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)催化谷氨酸脱羧合成GABA,称为GABA支路(GABA shunt);另一条是由多胺降解产物转化形成GABA,称为多胺降解途径(polyamine degradation pathway)。 GABA支路 在高等植物中,GABA的代谢主要由三种酶参与完成,首先在GAD作用下,L-谷氨酸(glutamic acid,Glu)在α-位上发生不可逆脱羧反应生成GABA,然后在GABA转氨酶(GABA transaminase,GABA-T)催化下,GABA与丙酮酸和α-酮戊二酸反应生成琥珀酸半醛,最后经琥珀酸半醛脱氢酶(succinic semialdehyde dehydrogenase,SSADH)催化,琥珀酸半醛氧化脱氢形成琥珀酸最终进入三羧酸循环(krebs circle)。这条代谢途径构......阅读全文

关于γ-氨酪酸植物中代谢途径的介绍

  在植物体中有两条GABA合成和转化途径:一条是谷氨酸经谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)催化谷氨酸脱羧合成GABA,称为GABA支路(GABA shunt);另一条是由多胺降解产物转化形成GABA,称为多胺降解途径(polyamine degradat

γ-氨酪酸的微生物代谢途径

  在微生物中,GABA代谢是通过GABA支路完成的,利用微生物体内较高的GAD活性,将Glu脱羧形成 GABA,然后在GABA-T、SSADH作用下,GABA进入下游的分解过程生成琥珀酸半醛、琥珀酸参与微生物的生理代谢。微生物富集GABA就是通过对培养基的优化以及菌株的改良使其具有较高的GAD活性

关于γ-氨酪酸在干旱和水涝中的作用介绍

  20世纪末,人们就发现干旱可以降低根的固氮和O2的扩散,使得植物缺氧而导致GABA的积累。低氧条件下谷氨酸和天冬氨酸含量增加。干旱下GAD活性提高,GABA-T快速积累。干旱条件下,根系、茎的生长和叶面积伸展被抑制,活性氧增加,低分子渗透调节物质如GABA等氨基酸、多元醇、有机酸产量增加,以及抗

关于γ-氨酪酸的基本信息介绍

  γ-氨基丁酸是一种化合物,化学式是C₄H₉NO₂,别名4-氨基丁酸(γ-aminobutyric acid,简称GABA),是一种氨基酸,在脊椎动物、植物和微生物中广泛存在。 [1] γ-氨基丁酸(Gamma-aminobutyric acid,GABA)是一种重要的中枢神经系统抑制性神经递质,

关于γ-氨酪酸的生物学功能介绍

  GABA在动植物以及微生物中有较多的发现,其中在1949年首先在马铃薯的块茎中发现,在1950年又在哺乳动物的中枢系统中发现其存在,同时被认为是哺乳动物、昆虫或者某些寄生蠕虫神经系统中的神经抑制剂,对神经元的兴奋程度有着重要的影响。 [2] 研究发现 , GABA 是在人脑能量代谢过程中起重要作

关于γ-氨酪酸的允许添加剂量的介绍

  欧洲食品安全局(EFSA)虽然允许食物中添加GABA,规定GABA的膳食摄入量上限为550mg/d,但是其主要功能特性尚需严格的人群试验结果加以佐证。美国食品药品监督管理局(FDA)根据毒理学实验结果指出食品中添加GABA是安全的,使用范围包含饮料、咖啡、茶和口香糖等,但不允许在婴儿食品、肉制品

关于γ-氨酪酸的分子结构数据介绍

  1、 摩尔折射率:25.68 [15]  2、 摩尔体积(cm3/mol):92.8 [15]  3、 等张比容(90.2K):242.1 [15]  4、 表面张力(dyne/cm):46.2 [15]  5、 极化率(10-24cm3):10.18

概述γ-氨酪酸的制备方法介绍

  1993年有学者第一次通过化学合成的方法成功研制出了GABA。此后的相关研究日益丰富。为了获得更多的GABA,科研人员开始了各种尝试,并获得了诸多成果。 [2]  化学合成法  比较重要的化学合成主要有以下几种:第一种是采用邻苯二甲酰亚氨钾以及γ-氯丁氰或丁内酯作为制作GABA的原料,剧烈反应并

关于γ-氨酪酸的维持碳氮平衡的作用介绍

  碳氮代谢平衡涉及许多生理过程,包括能量代谢、氨基酸代谢等。由于GABA合成和分流途径涉及氮代谢,GABA也是能量循环中三羧酸循环的重要组成部分,GABA分流途径与呼吸链竞争SSADH,因此长时间以来 GABA被认为是碳氮代谢的重要一环。三羧酸循环分支的谷氨酸合成GABA途径是植物快速响应外部刺激

关于代谢途径的特征介绍

  概括生物体代谢途径的重要特征为(1)由代谢的中间体产生许多分支,从而构成了复杂的代谢网;(2)正反应(A→X)与逆反应(X→A)的途径往往是不同的,因此防止达到单纯的平衡状态;(3)在代谢途径的一些中间过程有各种代谢调节作用。把代谢途径以线路图案形式来表示就是代谢图(metabolic map)

关于戊糖的代谢途径介绍

  磷酸戊糖途径,是糖有氧氧化的重要支路。它提供生物合成所需要的NADPH,为核酸代谢提供戊糖,并通过酵解的中间产物为生物提供能量。磷酸戊糖途径可划分为先后两个阶段,氧化为第一阶段,从葡萄糖开始通过脱氢和脱羧作用生成磷酸戊糖;非氧化为第二阶段,磷酸戊糖经过酶的转换和缩合作用(分子重排)又形成六碳糖和

关于嘌呤合成代谢途径介绍

腺嘌呤合成代谢包括从头合成途径和补救合成途径。从头合成途径主要在肝脏,以磷酸核糖、天冬氨酸、甘氨酸、谷氨酰胺、一碳单位为原料。嘌呤核苷酸是在磷酸核糖分子基础上逐步合成的,不是首先单独合成嘌呤碱然后再与磷酸核糖结合的。嘌呤核苷酸的补救合成主要是体内某些组织器官如脑、骨髓等缺乏从头合成嘌呤核苷酸的酶系,

人体内氨的主要代谢途径

氨的主要去路氨在体内的主要去路是在肝内通过鸟氨酸循环(尿素循环)生成无毒的尿素,然后由肾排出体外)。鸟氨酸循环的过程可分为以下四步:1)氨基甲酰磷酸的合成:氨由丙氨酸与谷氨酰胺转运入肝细胞线粒体在氨基甲酰磷酸合成酶Ⅰ(carbamoyl phosphate synthetaseⅠ,CPS-Ⅰ)催化下

关于γ-氨酪酸的计算机化学数据介绍

  1、 疏水参数计算参考值(XlogP):-3.2 [15]  2、 氢键供体数量:2 [15]  3、 氢键受体数量:3 [15]  4、 可旋转化学键数量:3 [15]  5、 互变异构体数量:  6、 拓扑分子极性表面积(TPSA):63.3 [15]  7、 重原子数量:7 [15]  8

简述γ-氨酪酸的物化性质

  γ-氨基丁酸别名4-氨基丁酸(γ-aminobutyric acid,简称GABA),是一个氨基酸,化学式:H2NCH2CH2CH2COOH;分子质量:103.1。GABA呈白色结晶体粉末状,没有旋光性。 [2] 熔点195-204℃(分解) [3] [4] ,与水混溶,微溶于乙醇、丙酮,不溶于

概述γ-氨酪酸的其他生理作用

  50mmol/L GABA和不同盐浓度会对植物幼苗产生不同的影响,当NO3-离子低于40mmol/L时,GABA会刺激根伸长,当NO3-离子大于40mmol/L时GABA会抑制根伸长。并且GABA刺激低浓度的NO3-吸收,抑制高浓度NO3-的摄取,而GS等酶被氮调控,以上研究认为氮对调控植物生长

简述γ-氨酪酸的来源及应用

  植物组织中GABA的含量极低,通常在0.3~32.5 μmol/g之间。已有文献报道,植物中GABA富集与植物所经历胁迫应激反应有关,在受到缺氧、热激、冷激、机械损伤、盐胁迫等胁迫压力时,会导致GABA的迅速积累。对植物性食品原料采用某种胁迫方式处理后,或通过微生物发酵作用使其体内GABA含量增

γ-氨酪酸对外部酸化的响应

  低pH下GABA会在细胞内快速增加,这种GABA的积累在微生物和动物中也存在。植物在酸性pH下细胞内 H+随之升高,诱导细胞内GABA含量增加。该GABA的合成过程消耗H+,使得细胞内酸化得到缓解。在微生物中也存在这种快速的反应机制,在产生GABA的同时,会增加质子呼吸链复合物的表达,促进ATP

关于苏氨酸的性状和代谢途径介绍

  性状  L-苏氨酸是一种必需的氨基酸,苏氨酸主要用于医药、化学试剂、食品强化剂、饲料添加剂等方面。苏氨酸为白色斜方晶系或结晶性粉末。无臭,味微甜。253℃熔化并分解。高温下溶于水,25°C溶解度为20.5g/100ml。等电点5.6。不溶于乙醇、乙醚和氯仿。  代谢途径  苏氨酸在机体内的代谢途

简述γ-氨酪酸对昆虫的防御作用

  GABA有助于植物对外界天敌的防御。当昆虫取食时由于植物受伤导致细胞破裂和组织受伤,这种机械切割会刺激植物中Ca2+的增加,植物在Ca2+刺激下分泌GABA作为一种抵御昆虫取食的措施。在此过程中不存在茉莉酸类信号参与GABA的积累。昆虫存在离子型GABA受体,其中果蝇的GABA门控氯离子通道亚基

什么是代谢途径?代谢途径的过程

习惯上把这种连续的化学反应叫作代谢途径。如酵解途径,三羧酸循环途径,戊糖磷酸途径,糖原合成途径,糖异生途径,脂肪酸合成途径等。中间代谢也称为细胞内代谢。在中间代谢过程中,机体借助于各种反应从营养素或消化产物中获得能量,以及机体构成所需要的“原材料”。整个中间代谢可以划分为两个过程,即分解代谢和合成代

苏氨酸的代谢途径介绍

  苏氨酸在机体内的代谢途径和其他氨基酸不同,是唯一不经过脱氢酶作用和转氨基作用,而是通过苏氨酸脱水酶(TDH)和苏氨酸脱酶(TDG)以及醛缩酶催化而转变为其他物质的氨基酸。途径主要有3条:通过醛缩酶代谢为甘氨酸和乙醛;通过TDG代谢为氨基丙酸、甘氨酸、乙酰COA;通过TDH代谢为丙酸和α-氨基丁酸

γ-氨酪酸的相关的研究实验和应用

  实验一:  研究口服给予γ-氨基丁酸对改善小鼠睡眠的影响。方法:将小鼠分为A,B,C三批进行实验,每批五组,分别为阴性对照组,阳性对照组和低、中、高剂量组.连续给予γ-氨基丁酸(50,100,150mg/kg)30天,进行了四项睡眠功效评价实验。结果:中、高剂量γ-氨基丁酸口服后,可以延长睡眠时

关于极低密度脂蛋白的代谢途径的介绍

  由肝脏所释放的初期VLDL含有,载脂蛋白B、载脂蛋白C1、载脂蛋白E、胆固醇、胆固醇酯和三酸甘油脂。当它在血液中环绕后,会携带载脂蛋白C2以及加上由高密度脂蛋白而来的apoE。以这个观点来看,初期VLDL变成了成熟的VLDL。  一旦在此循环中,VLDL便和脂蛋白脂酶(LPL)在身体里的微血管床

概述γ-氨酪酸的在抗氧化和氧化过程中的作用

  GABA分流作为三羧酸循环分支途径的中间产物,与能量循环关系密切。同时GABA作为氧化代谢物的调控者发挥作用。将拟南芥SSADH突变体暴露于高温下生长,发现其活性氧中间体(reactive oxygen intermediate,ROI)积累,使得植株死亡, [7] 证明ROI与GABA存在关系

氨的代谢过程介绍

氨是一种剧毒物质,脑组织对氨的作用尤为敏感,需要及时处理以免在组织中堆积。正常人除门静脉血液外,血液中氨的浓度极低,一般不超过60μmol/L(0.1mg/dl)。1.体内氨的来源(1)氨基酸分解产生氨:氨基酸脱氨基作用是氨的主要来源;胺类物质的氧化分解也可产生氨。(2)肠道吸收:肠道氨主要来自①肠

景天酸代谢途径植物的光合研究

景天酸代谢途径植物的光合研究 汉莎科学仪器有限公司 (山东 271000)   背景资料:景天酸代谢途径(crassulacean acid metabolism pathway,CAM途径),指生长在热带及亚热带干旱及半干旱地区的一些肉质植物(最早发现在景天科植物)所具有的一种光合固定二氧化碳

概述γ-氨酪酸的抗逆及调控作用

  GABA长久以来被认为与植物多种应激和防御系统有关。GABA会随着植物受到刺激而升高,被认为是植物中响应于各种外界变化、内部刺激和离子环境等因素如pH、温度、外部天敌刺激的一种有效机制。GABA还可以调节植物内环境如抗氧化、催熟、保鲜植物等作用。近年来GABA在植物中也被发现作为信号分子在植物中

关于γ-氨基丁酸的微生物代谢途径介绍

  在微生物中,GABA代谢是通过GABA支路完成的,利用微生物体内较高的GAD活性,将Glu脱羧形成 GABA,然后在GABA-T、SSADH作用下,GABA进入下游的分解过程生成琥珀酸半醛、琥珀酸参与微生物的生理代谢。微生物富集GABA就是通过对培养基的优化以及菌株的改良使其具有较高的GAD活性

尿刊酸的代谢途径介绍

尿刊酸是由L-组氨酸通过组氨酸解氨酶(或称为组氨酸氨裂解酶或组氨酸酶)脱氨而来。在肝脏中,尿刊酸由尿刊酸水合酶转化为咪唑-4-酮-5-丙酸,并最终转化为谷氨酸。