植生生态所在昆虫遗传调控研究中取得新进展

4月8日,《美国科学院院刊》(PNAS)在线发表了中科院上海生科院植物生理生态研究所黄勇平课题组关于家蚕遗传调控的最新研究成果Transgene-based, female-specific lethality system for genetic sexing of the silkworm, Bombyx mori。同日,Nature News也对相关内容进行了介绍。该研究报道了一个雌性特异致死的家蚕转基因系统。 家蚕是鳞翅目昆虫的代表性模式昆虫,同时也是一种重要的经济昆虫,中国是世界上最大的蚕桑产业国家,蚕桑丝绸产业是国民经济的重要组成部分。与雌蚕相比,雄蚕体质强健,更容易饲养,同时食桑量少,叶丝转化率高;此外,雄蚕丝纤度细、净度好,适于缫制高品位生丝。因此,专养雄蚕是蚕业生产上的一个重要追求目标。近年来,随着包括转基因技术在内的家蚕遗传操作技术的不断进步,为通过分子生物学手段进行新型育种提供了可能。 黄......阅读全文

合成“基因开关”能调控植物遗传特性

美国科罗拉多州立大学团队成功合成出一种“基因开关”,首次实现了灵活地开启或关闭成熟植物中的关键遗传特性。该成果发表在最新美国化学会旗下的《ACS合成生物学》杂志上,为未来按需设计的智能农业打下基础。这项研究由跨学科团队完成,是合成生物学领域具有里程碑意义的重要进展。团队通过设计和构建新的DNA片段,

PNAS描述新型基因表达调控系统

  报道:科学家们开发了一个调控基因表达的新系统,该系统只需将特定DNA序列简单插入到基因的任意一侧,就可以实现剂量依赖性的基因表达抑制。这项成果发表在美国国家科学院院刊PNAS杂志上,文章认为这一系统有望替代Tet基因表达调控系统。   这是首次采用适体酶核糖开关有条件地knockdown病毒基

Nature:表观遗传与基因调控的新发现

  最近在《Nature》杂志发表的一篇研究中,瑞士Friedrich Miescher生物医学研究所(FMI)的Dirk Schübeler和他的研究小组,描述了转录因子和DNA表观遗传修饰之间的相互作用,会对基因调控有何影响。科学家发现,转录因子可以通过DNA甲基化模式的改变而间接合作:通过去除

新的基因编辑领域突破口—表观遗传调控

  几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白

下一代转基因工具:表观遗传调控

  2015年,加州大学圣地亚哥分校的生物学家Ethan Bier和Valentino Gantz提出了一项突破性技术,这种名为“活跃遗传(active genetics)”的新技术打破了父母向后代传递遗传性状的几率(超越孟德尔式遗传)。  今年2月,他们和Shannon Xu在《eLife》发表文

新的基因编辑领域突破口—表观遗传调控

  几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白

新CRISPR转基因鼠体内基因表达和表观遗传修饰精准调控

  CRISPR-Cas9系统为基础的基因编辑技术极大的推动了生物医学研究的进步。除直接编辑基因组DNA外,研究者还将失活型Cas9(dCas9)与转录调控元件或染色体修饰元件融合,构建出可实现转录和表观遗传学修饰调控的新工具如CRISPRa(转录激活工具),CRISPRi(转录抑制工具)以及CRI

遗传发育所等鉴定大豆百粒重调控基因

  大豆是我国重要的粮食作物和经济作物,是植物蛋白和油分的重要来源。百粒重是大豆产量的重要构成因子,因此是大豆育种的重要目标性状。由于栽培大豆品种遗传基础狭窄,在育种过程中某些栽培大豆品种中优异等位的丢失,阻碍了大豆百粒重和产量的进一步增加。近年来研究人员对大豆百粒重遗传位点的研究较多,目前SoyB

新的基因编辑领域突破口——表观遗传调控(二)

2.  神经系统疾病▼  致病机理:神经细胞中由于遗传缺陷导致的疾病▼  代表工作:同时另一项突破性的工作则使用一种SunTag(dCas9-10xGCN4)系统融合多个拷贝的转录激活蛋白(p65-HSF1),构建了一种Cre依赖性的SunTag-p65-HSF1(SPH)转基因小鼠模型。使用AAV

新的基因编辑领域突破口——表观遗传调控(一)

几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白修饰

新研究解析调控大豆粒重遗传位点和驯化基因

近日,广东省科学院南繁种业研究所教授王振宇团队联合南京农业大学国家大豆改良中心教授赵团结团队,研究解析调控大豆粒重遗传位点和驯化基因。相关成果发表于《理论与应用遗传学》。俗语说:“宁可食无肉,不可食无豆。”大豆是优质的植物蛋白资源,也是健康的食用植物油源。我国是大豆的原产地,种植和消费历史悠久。然而

我学者发明一种光调控基因表达系统

  我国科学家在合成生物学与光遗传学前沿领域获得重要突破,发明了一种简单实用的光调控基因表达系统,将可以广泛应用于基础研究领域,并可能用于光动力治疗。国际权威学术期刊《自然—方法学》2月12日在线发表了华东理工大学生物反应器工程国家重点实验室、药学院杨弋课题组独立完成的这项研究成果。   据悉,这

光遗传技术在调控神经系统与疾病治疗领域的应用

光能控制语言和行为光,可以是冬日的暖阳,夜空的星月,蛰伏的萤虫,令人期盼的万家灯火……光也可以作为一种工具,控制行为,控制语言!这在神经科学领域已经得到证实,美国德州大学西南医学中心研究团队成功以光控植入记忆的方式教导鸟类唱歌。 研究团队对幼年雄性斑胸草雀进行实验,斑胸草雀通常通过模仿父亲的歌声来学

多基因遗传与数量遗传

  多基因遗传(polygenic inheritance)是指生物和人类的许多表型性状由不同座位的较多基因协同决定,而非单一基因的作用,因而呈现数量变化的特征,故又称为数量性状遗传。多基因遗传时,每对基因的性状效应是微小的,故称微效基因(minor gene),但不同微效基因又称为累加基因

血糖稳态调控系统

血糖稳态调控系统如同精密的温度调控系统,需要核心调糖靶器官(胰岛、肝脏、肠道等)精密协作、共同发挥作用,而核心靶器官的调节作用共同依赖于在葡萄糖激酶(GK)。血糖水平发生变化时,葡萄糖激酶GK感知葡萄糖水平变化并转换为各靶器官的调糖响应,从而维持血糖稳态。 [3] 人体血糖稳态平衡调控的感应和执行系

Rh系统命名遗传

Rh系统的命名及遗传:有Fisher-Race、Wiener、Rosenfield3种命名法。Fish-er-Race命名法又称CDE命名法,这种学说认为Rh遗传基因位于第1号染色体的短臂上,Rh血型有3个紧密相连的基因位点,每一位点有一对等位基因(D和d,C和c、E和e),这3个基因是以一个复合

《Cell》文章:特殊的表观遗传调控

  来自中科院生物物理所,美国哥伦比亚大学的研究人员发表了题为“Multisite Substrate Recognition in Asf1-Dependent Acetylation of Histone H3 K56 by Rtt109”的文章,报道了Rtt109-Asf1-H3-H4复合物的

免疫系统和表观遗传学调控:一个新的前沿领域

   表观遗传学(epigenetics)研究转录前基因在染色质水平的结构修饰对基因功能的影响,这种修饰可通过细胞分裂和增值周期进行传递。表观遗传学已成为生命科学中普遍关注的前沿,在功能基因组时代尤其如此。免疫系统被认为是一个解析表观遗传学调控机制的良好模型,而且免疫细胞伯分化及功能表达和表观遗

什么是基因表达调控?基因表达调控有什么意义

意义:1.适应环境、维持生长和增殖:生物体赖以生存的外环境是在不断变化的,为了生存,所有活细胞都必须对外环境变化作出适当反应,调节代谢,以适应环境变化。生物体适应环境、调节代谢的能力与蛋白质分子的生物学功能有关。而蛋白质的水平又受基因表达的调控。2.维持个体发育与分化:多细胞生物调节基因的表达除为适

遗传发育所大豆茸毛密度遗传网络调控研究获进展

  大豆驯化起源于中国,随后广泛传播于世界各地,为人类提供了主要的植物油和蛋白资源,是世界性的重要粮食经济作物。表皮毛是植物表皮细胞分化形成的一种特殊的细胞形态,广泛分布于植物的叶片、茎秆以及花萼等地上部器官表面。作为植物应对外界环境(生物或者非生物胁迫)的第一道防线,表皮毛在植物的生长发育以及抗逆

基因调控的介绍

  基因表达的主要过程是基因的转录和信使核糖核酸(mRNA)的翻译。基因调控主要发生在三个水平上,即①DNA水平上的调控、转录控制和翻译控制;②微生物通过基因调控可以改变代谢方式以适应环境的变化,这类基因调控一般是短暂的和可逆的;③多细胞生物的基因调控是细胞分化、形态发生和个体发育的基础,这类调控一

基因调控的简史

  1900年F.迪纳特发现在含有乳糖和半乳糖的培养液中培养的酵母菌细胞中有分解半乳糖的酶,但是在葡萄糖的培养液中培养的酵母菌细胞中没有相应的酶。1930年H.卡尔斯特伦在关于细菌的研究中也发现类似的现象,并把生物细胞中的酶区分为组成酶和适应酶(亦称诱导酶)两类,前者是在任何情况下都存在的酶,后者是

基因表达的调控

转录调控可分为三种主要途径:1)遗传调控(转录因子与靶标基因的直接相互作用);2)调控转录因子与转录机制相互作用,3)表观遗传调控(影响转录的DNA结构的非序列变化)。通过转录因子直接调控靶标DNA表达是最简单和最直接的转录调控改变转录水平的方法。基因的编码区周围通常都具有几个蛋白质结合位点,具有调

简述血糖稳态调控系统

  血糖稳态调控系统如同精密的温度调控系统,需要核心调糖靶器官(胰岛、肝脏、肠道等)精密协作、共同发挥作用,而核心靶器官的调节作用共同依赖于在葡萄糖激酶(GK)。血糖水平发生变化时,葡萄糖激酶GK感知葡萄糖水平变化并转换为各靶器官的调糖响应,从而维持血糖稳态。

JEM:免疫细胞增殖的遗传调控机制

  生发中心是淋巴结中生产抗体的B细胞快速增殖以及分化时所停留的暂时性的区域。生发中心可以被分为暗区与亮区。当增殖以及分化发生的时候,B细胞需要在两个区域之间转移。目前,来自日本大阪大学的研究者们找到了调控B细胞转移的关键基因,或许能够帮助解释特定类型淋巴瘤产生的原因。相关结果发表在《Journal

上海生科院揭示等位遗传调控机制

  5月14日,国际学术期刊Cell Reports在线发表了中国科学院上海生命科学研究院植物逆境生物学研究中心朱健康研究组题为Involvement of multiple gene silencing pathways in a paramutation-like phenomenon in A

朱健康小组揭示等位遗传调控机制

  近日,中科院上海植物逆境生物学研究中心朱健康研究组在《细胞报告》上在线发表科研成果,解析等位遗传发生、维持与传递过程,加深了人们对植物等位遗传分子机制的认知。  等位遗传是生物适应环境的一个重要表现,它能够将生物响应环境应答的讯号在当代及后代中保留下来,从而有利于提高生物对环境的适应性。研究植物

基因“剪刀”可加速特定基因遗传

  CRISPR可增加雌性实验鼠将特定基因传给后代的几率。图片来源:ISTOCK近日,研究人员首次使用被称为基因“剪刀”的基因组技术CRISPR加快哺乳动物特定基因的遗传。这种极具争议的基因驱动策略几年前在实验室饲养的昆虫中得到证明。因为它能在整个物种中迅速传播一种基因,从而激发了人们利用

器官边界区基因调控网络的系统生物学研究获进展

  植物的侧生器官边界区将叶片等侧生器官(分化细胞)与顶端分生组织(干细胞)分隔开,确保器官的形成和干细胞的维持。此外,器官边界区产成侧生分生组织,进而形成侧芽,影响植物株型的建成。但由于边界区细胞数量较少,表型不易观察,因此对边界区形成的正反向遗传学研究都很困难,使得我们对边界区形成的调控机理知之

遗传发育所发现泛素蛋白酶体系统调控免疫受体的稳定性

植物细胞内抗病受体蛋白(NLR)介导对病原菌的专化性抗性并通常伴有侵染部位的细胞死亡,调控这类免疫受体的稳定性对植物抗病意义重大。在拟南芥中的研究表明,结构类似的免疫受体蛋白直接受泛素蛋白酶体系统(UPS)调控,而在作物中尤其是麦类作物中没有NLR受体直接受UPS蛋白降解途径调控的报道。中国科学院遗