青岛能源所纤维素酶研究取得进展

近日,在国家重点基础研究发展计划(973计划)和科技部科技支撑计划等项目支持下,中国科学院青岛生物能源与过程研究所在细菌纤维素酶表达调控机制研究中取得进展。 木质纤维素的高效降解是发展纤维素液体燃料的主要技术瓶颈之一。自然界中一些厌氧细菌能够通过合成组装一种名为“纤维小体”的蛋白质分子机器,高效降解木质纤维素。“纤维小体”是一种多亚基的纤维素酶复合体,其活性可达目前市场上常用的真菌游离纤维素酶系的50倍以上。但是由于纤维小体亚基众多,目前仍然缺乏对其表达调控机制的深入认识。这一瓶颈也阻碍了细菌纤维素酶系及其活体细胞催化剂在纤维素液体燃料产业的应用。 青岛能源所功能基因组团队许成钢博士和博士研究生黄冉冉等以解纤维梭菌Clostridium celluloyticu为模式物种,通过功能基因组手段,提出了细菌的“纤维素降解组(Cellulose Degradome)”模型(图1)。 该菌近两百个多糖降解酶(C......阅读全文

光热催化液体燃料评价装置

  光热催化是在光催化的基础上同时加热,或在热催化的基础上同时进行光照以达到共同催化目的的一种新型催化手段,是当前催化领域的研究热点。文章介绍了光热协同催化在能源合成领域的应用,包括光热催化CO加直、光热催化CO还原、光热分解水制氢等。研究发现,光催化与热催化耦合确实能够高效驱动反应的进行,明显改善

光热催化液体燃料评价装置介绍

热催化是在光催化的基础上同时加热,或在热催化的基础上同时进行光照以达到共同催化目的的一种新型催化手段,是当前催化领域的研究热点。文章介绍了光热协同催化在能源合成领域的应用,包括光热催化CO加直、光热催化CO还原、光热分解水制氢等。研究发现,光催化与热催化耦合确实能够高效驱动反应的进行,明显改善了单一

中日联合研发制备液体燃料新技术

  寻找替代原油的新方法和新技术一直是科学家追求的事业。日本富山大学教授椿范立团队和厦门大学教授王野团队联合在费托合成催化剂研究方面取得了创新性成果,为直接合成不同类型的液体燃料提供了一种简单有效的方法。近日,该成果发表于《自然—催化》。  随着社会经济发展,人们对汽油、航空煤油、柴油等液体燃料的需

青岛能源所纤维素酶研究取得进展

  近日,在国家重点基础研究发展计划(973计划)和科技部科技支撑计划等项目支持下,中国科学院青岛生物能源与过程研究所在细菌纤维素酶表达调控机制研究中取得进展。   木质纤维素的高效降解是发展纤维素液体燃料的主要技术瓶颈之一。自然界中一些厌氧细菌能够通过合成组装一种名为“纤维小体”的蛋白质分子机器

青岛能源所在纤维素仿酶水解技术研究中取得新进展

  纤维素水解技术是纤维素生物液体燃料产业化的关键问题之一。由于少数跨国企业的技术垄断,使纤维素酶价格居高不下。掌握具有自主产权的纤维素水解技术成为我国纤维素生物液体燃料产业化的关键。  近日,中国科学院青岛生物能源与过程研究所牟新东研究员带领的绿色化学催化团队在仿酶智能酸催化纤维素

开启生物质能财富之门:先进生物液体燃料

  在全球面临能源依赖度提高、温室气体排放增加以及因国际能源市场价格波动而带来的风险时,世界多国纷纷开始实施新的能源战略,强调发展各种可再生能源。由于生物质是唯一能直接被用于生产各种交通运输替代燃料(特别是乙醇)的来源,在多种可再生能源(生物质、太阳能、风能、地热能、潮汐能等)中,生物质能被列为首选

黑龙江鼓励用“地沟油”生产液体燃料

  哈尔滨10月26日电(记者刘斐 熊琳)黑龙江省人大常委会近日表决通过了《黑龙江省食品安全条例》,其中鼓励利用“地沟油”生产液体燃料。该条例将于2013年2月1日起正式实施。   条例第66条规定,“利用餐厨废弃物生产的生物液体燃料,符合国家标准的,石油销售企业应当将其纳入燃料销售体系。”  

农林生物质定向转化制备液体燃料取得新突破

   农林生物质定向转化制备液体燃料多联产成果获得2016年国家科技进步二等奖。该研究开发了卧式、立式有机组合的连续化高温高压无蒸煮液化装置及工程化生产与控制系统,木质纤维原料转化率>95%,乙酰丙酸收率较传统蒸煮水解方法提高了30%以上,产物纯度>98%,开发了自热式连续裂解关键技术及成套装置,裂

科学家实现液体燃料选择性集成调控

  在目前的能源结构中,源自石油的碳氢液体燃料发挥着极其重要的作用。石油资源不可再生,而人们对碳氢液体燃料的需求却在日益扩大,石油资源终有消耗殆尽的时刻。因此,充分利用非石油基碳资源(天然气、生物质、煤等)以及探索新的碳氢液体燃料生产方法变得极为迫切。费托合成(Fischer-Tropsch syn

仅利用太阳能,人造树叶可制成清洁液体燃料

  英国剑桥大学化学系研究人员开发了一种太阳能技术,可以将二氧化碳和水转化为液体燃料,并能直接作为临时燃料驱动汽车发动机。研究结果发表在18日的《自然·能源》杂志上。  研究人员利用光合作用的力量,只需一步就能将二氧化碳、水和阳光转化为多碳燃料,即乙醇和丙醇。这些燃料能量密度高,易于储存或运输。与化

仅利用太阳能,人造树叶可制成清洁液体燃料

原文地址:http://news.sciencenet.cn/htmlnews/2023/5/500931.shtm

纤维素酶简介

CAS编码 9012-54-8英文通用名称 Cellulase中文通用名称 纤维素酶 [进入食品百科查看-- 纤维素酶 的信息]性状描述 灰白色无定形粉末或液体。主要作用原理为使纤维素的多糖中β-1,4-葡萄糖水解为β-糊精。作用的最适pH值为4.5~5.5。对热较稳定,即使在100℃下保持min仍

甲烷转化新策略-温和条件下直接转化为液体燃料

  中国科学院上海硅酸盐研究所2月24日发布消息称,该所王文中研究员带领的科研团队在甲烷光催化转化研究方面取得新进展,提出了温和条件下甲烷向液体燃料直接转化的新策略。  光催化直接转化可以打破传统热力学平衡的束缚,使甲烷的转化可以在低温常压下进行。王文中研究团队设计并制备出铜修饰氮化碳材料,实现甲烷

低变质煤直接转化制高品质液体燃料研究中期检查

  2019年1月11日,科技部高技术中心“煤炭清洁高效利用和新型节能技术”重点专项管理办公室(以下简称“专项办”)组织专家组在辽宁大连对大连理工大学牵头的“低变质煤直接转化制高品质液体燃料和化学品的基础研究”项目进行了中期检查。大连理工大学副校长姚山、科研管理部门代表,项目负责人和骨干成员,专项总

纤维素酶的用途

用途 酶制剂。主要用于谷类、豆类等植物性食品的软化、脱皮;控制(降低)咖啡抽提物的粘度,最高允许用量为100mg/kg;酿造原料的预处理;脱脂大豆粉和分离大豆蛋白制造中的抽提;淀粉、琼脂和海藻类食品的制造;消除果汁、葡萄酒、啤酒等中由纤维素类所引起的混浊;绿茶、红茶等的速溶化等。

纤维素酶的分类

1、葡聚糖内切酶:能在纤维素酶分子内部任意断裂β-1,4糖苷键。2、葡聚糖外切酶或纤维二糖酶:能从纤维分子的非还原端依次裂解β-1,4糖苷键释放出纤维二糖分子。3、β-葡萄糖苷酶:能将纤维二糖及其他低分子纤维糊精分解为葡萄糖。Irwin等1993年发现,实际上在分解晶体纤维素时任何一种酶都不能单独裂

纤维素酶的分类

1、葡聚糖内切酶:能在纤维素酶分子内部任意断裂β-1,4糖苷键。2、葡聚糖外切酶或纤维二糖酶:能从纤维分子的非还原端依次裂解β-1,4糖苷键释放出纤维二糖分子。3、β-葡萄糖苷酶:能将纤维二糖及其他低分子纤维糊精分解为葡萄糖。Irwin等1993年发现,实际上在分解晶体纤维素时任何一种酶都不能单独裂

纤维素酶的应用

制酒        在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。

纤维素酶的来源

纤维素酶的来源   纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。   用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As?pergillus)和青霉属(Penicillium),特别是绿色木霉(T

纤维素酶的用途

纤维素酶用于咖啡的商业食品加工。它在豆类干燥过程中进行纤维素的水解。此外,纤维素酶广泛用于纺织工业和洗衣洗涤剂。它们还用于纸浆和造纸工业的各种用途,甚至用于制药应用。纤维素酶用于将生物质发酵成生物燃料,尽管目前该过程相对处于实验阶段。在医学上,纤维素酶用于治疗植物牛黄,这是一种在人胃中发现的纤维素牛

纤维素酶的应用

制酒   在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。  将纤维

纤维素酶的来源

”中的“插入分页标志”按钮实现分页。纤维素酶的来源        纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。        目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As?pergil

纤维素酶的来源

纤维素酶的来源非常广泛,昆虫、微生物、细菌、放线菌、真菌、动物体内等都能产生纤维素酶。目前,用于生产纤维素酶的微生物菌种较多的是丝真菌,其中酶活力较强的菌种为木霉属(Trichoderma)、曲霉属(As?pergillus)和青霉属(Penicillium),特别是绿色木霉(Trichoder?m

纤维素酶的类型

基于催化反应类型的五种一般纤维素酶类型:内切纤维素酶(EC3.2.1.4)在无定形位点随机切割内部键,从而产生新的链端。外切纤维素酶或纤维二糖水解酶(EC3.2.1.91)从内切纤维素酶产生的暴露链的末端切割2到4个单元,产生四糖或二糖,例如纤维二糖。外切纤维素酶进一步分为I型,从纤维素链的还原端开

纤维素酶的结构

大多数真菌纤维素酶具有双结构域结构,具有一个催化结构域和一个纤维素结合结构域,它们通过柔性接头连接。这种结构适用于在不溶性底物上工作,它允许酶以类似毛毛虫的方式在表面上二维扩散。然而,也有缺乏纤维素结合域的纤维素酶(主要是内切葡聚糖酶)。底物的结合和催化作用都依赖于酶的三维结构,这是蛋白质折叠水平的

纤维素酶的应用

制酒在进行酒精发酵时添加纤维素酶可显著提高酒精和白酒的出酒率和原料的利用率,降低溶液的黏度,缩短发酵时间,而且酒的口感醇香,杂醇油含量低。纤维素酶提高出酒率的原因可能有两方面:一是原料中部分纤维素分解成葡萄糖供酵母使用;另外,由于纤维素酶对植物细胞壁的分解,有利于淀粉的释放和被利用。将纤维素酶应用于

什么是纤维素酶?

纤维素酶是主要由真菌、细菌和原生动物产生的几种酶中的任何一种,可催化纤维素分解、纤维素和一些相关多糖的分解。该名称也用于任何天然存在的混合物或各种此类酶的复合物,它们连续或协同作用以分解纤维素材料。纤维素酶将纤维素分子分解成单糖(“单糖”),例如β-葡萄糖,或更短的多糖和寡糖。纤维素分解具有相当大的

纤维素酶的种类

1 葡聚糖内切酶(endo-1,4-β-D-glucanase E.C 3.2.1.4,来自真菌简称EG,来自细菌简称Len),又称为C1酶,这类酶作用于纤维素内部的非结晶区,随机水解β-1,4-糖苷键,将长链纤维素分子截短,产生大量带非还原性末端的小分子纤维素。葡聚糖内切酶分子量介于23~146之

863项目“生物质液体燃料的高温生物炼制”课题启动会召开

  8月26日,863项目“纤维类生物质高效转化利用技术”之“生物质液体燃料的高温生物炼制”课题启动会在北京召开。   会议由项目首席专家马隆龙研究员主持,天津工业生物技术研究所副所长马延和代表课题承担单位致辞,科技部农村中心处处长葛毅强在会上发表讲话。   葛毅强对“十二五”863计划管理办法

二氧化碳变液体燃料找到新方案

  2016年1月7日,中国科学技术大学化学与材料科学学院、合肥微尺度物质科学国家实验室谢毅教授及孙永福特任教授课题组在《自然》杂志发表了“杂化二维超薄结构电催化还原二氧化碳”的研究成果,为二氧化碳催化转化成液体燃料提供了一种新的方案。  过去二氧化碳活化需要大量能源  进入本世纪以来,工业化进程中