聚焦放射性药物检验,研究发展新趋势

8月26日,由中国科学院上海分院、上海市核学会共同主办,中国科学院上海应用物理研究所承办的第118期“放射性药物研究前沿与发展趋势”交叉学科论坛在上海举行。 陈凯先、沈文庆、洪茂椿等院士专家应邀参会,上海市科学技术委员会、上海市核电办公室、上海市经济和信息化发展研究中心、中国科学院前沿科学与教育局、中国科学院上海分院等负责人以及来自国内科研院所、高等院校、医院、企业的70余位专家学者参加论坛。 会议聚焦“放射性药物研究前沿和趋势”,围绕医用同位素生产、放射性药物发展前沿、α治疗药物与诊疗一体化放射性药物与临床应用、放射性药物人才培养与队伍建设等开展交流研讨,来自企业、医院、大学和科研机构的12名专家做了报告交流。 与会专家围绕放射性药物研发及应用创新链上的基础研究前沿和关键核心技术突破等关键点进行了深入研讨。......阅读全文

放射性药物靶向作用原理是什么

所谓“靶向作用”,就是说,像射箭一样有针对性,有一个靶部位,主要针对肿瘤,肿瘤细胞就是靶向药物的靶部位。靶向药物可提高治疗效果、延长患者总生存期而副作用相对较少。

岛津Nexis-GC精准测定放射性药物残留溶剂

放射性药物是一类由放射性同位素化合物组成的生物活性药物,主要包括放射性核素制剂、核素标记药物等,用于治疗和譬如正电子发射断层扫描(PET)的影像诊断。目前,国内外已获批的放射性药品在恶性肿瘤、心脑血管疾病、中枢神经系统疾病等诊断与治疗方面都发挥着特殊且重要作用。据上海药品审评核查中心发布的最新文献资

著名放射化学和放射性药物化学家刘伯里院士逝世

中国共产党优秀党员、我国著名放射化学和放射性药物化学家、中国放射性药物领域的主要开拓者、中国工程院院士、北京师范大学化学学院教授刘伯里先生因病医治无效,于2018年7月2日在北京逝世,享年88岁。 下文为中国工程院院士文集《刘伯里文集》(2016年

著名放射化学和放射性药物化学家刘伯里院士逝世

中国共产党优秀党员、我国著名放射化学和放射性药物化学家、中国放射性药物领域的主要开拓者、中国工程院院士、北京师范大学化学学院教授刘伯里先生因病医治无效,于2018年7月2日在北京逝世,享年88岁。   下文为中国工程院院士文集《刘伯里文集》(2016

放射性同位素概述

一、放射性同位素的特点  众所周知,放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位 素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位 素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、 β射线、γ射线和电子俘获等,但是放射性

放射性同位素概述

一、放射性同位素的特点众所周知,放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位 素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位 素,这就是所谓“核衰变”。放射性同位素在进行核衰变的时候,可放射出α射线、 β射线、γ射线和电子俘获等,但

放射性同位素的定义及放射性同位素技术的应用

原子有稳定和不稳定两种。不稳定的原子除天然元素外,主要由核裂变或核聚变程中产生碎片形成。这些不稳定的元素在放出α、β、γ等射线后,会转变成稳定的原子。这种不稳定的元素就称为放射性同位素。根据放射性同位素衰变过程放出的射线(或称辐射)的不同,放射性衰变有α、β、γ衰变三大类。放射性同位素技术已经广泛用

关于放射性同位素的放射性射线的主要应用

  (l)射线探测。将丫射线透过样品,若样品中有砂眼或裂痕,则射线在该处的吸收就减小,因此在样品后面放上照相底片,显影后的底片上将留下相应的痕迹。另外,射线通过物质时都按照一定的规律被物质吸收或散射,这样就可测量物体的密度及厚度等。在石油勘探方面,应用丫射线等可研究地层的性质,求出泥质含量,区分岩性

多个“软肋”掣肘核医学发展

  几个月前,从比利时进口的铼188(一种放射性核素)发生器抵达上海,帮助上海东方医院完成了一例肺癌患者的纳米枪治疗。  国产医用核素获得难,几乎依赖进口。类似的经历湘雅医院核医学科教授胡硕也深有感触,“我们的医生根据最新医学进展,希望合成锆89用于临床试验,然而在国内多方寻访也没找到委托生产方,常

什么是放射性同位素

如果两个原子质子数目相同,但中子数目不同,则他们仍有相同的原子序,在周期表是同一位置的元素,所以两者就叫同位素。有放射性的同位素称为“放射性同位素”,没有放射性的则称为“稳定同位素”,并不是所有同位素都具有放射性。放射性同位素(radiosotlope)是不稳定的,它会“变”。放射性同位素的原子核很

放射性同位素使用规则

RULES FOR THE USE OF RADIOACTIVITY You must be certified by EHS before you can use radioactivity.  The guiding principle isCOMMON SENSE.  I take radio

放射性同位素的定义

元素的原子由原子核和电子构成,而原子核又由质子和中子组成。同种元素具有相同的质子数,但可以有不同的中子数,这种具有相同的质子数而具有不同的中子数的元素叫同位素。其中有一些同位素的原子核能自发地发射出粒子或射线,释放出一定的能量,同时质子数或中子数发生变化,从而转变成另一种元素的原子核。元素的这种特性

放射性同位素衰变定律

放射性同位素衰变不受任何外界条件的影响,并以其固有的速度进行。不同放射性同位素衰变速度不一,但最终都变成稳定同位素。放射性同位素衰变速率(dN/dt)与现有母体原子数(N)成正比。其表达式则为dN/dt∝N等式可写成:同位素地球化学式中:λ为衰变常数,代表单位时间内母体原子的衰变几率;“-”表示母体

放射性硫同位素示踪太阳活动研究获进展

 太阳是太阳系的主要能量来源,控制着地球的气候和水文系统,从而维持地球表生环境的生命活动和宜居性。重建过去的太阳活动历史,对评估异常太阳活动的强度和频率,预测其对宇航员、现代科技通讯和生态系统的影响均有重要意义。高能宇宙射线轰击地球大气可以产生放射性同位素(又称宇生核素,如碳14、铍10等),这些宇

放射性同位素的相关介绍

  元素的原子由原子核和电子构成,而原子核又由质子和中子组成。同种元素具有相同的质子数,但可以有不同的中子数,这种具有相同的质子数而具有不同的中子数的元素叫同位素。其中有一些同位素的原子核能自发地发射出粒子或射线,释放出一定的能量,同时质子数或中子数发生变化,从而转变成另一种元素的原子核。元素的这种

仙后座A放射性同位素分布“重现”

  日本理化学研究所的一个国际联合研究小组利用最新计算机模拟,成功再现了大约340年前爆发的超新星残骸仙后座A中钛和镍的放射性同位素空间分布。由于这种分布能直接反映中子星爆炸的情况,有助于解开“超新星爆发”之谜。  质量超出太阳8倍以上的大质量星诞生之后,经过数百万年稳定进化,星体中心大部分由铁形成

放射性同位素热电机的介绍

放射性同位素热电机(Radioisotope Thermoelectric Generator,缩写RTG、RITEG)是一种利用放射性衰变获得能量的发电机。 此装置利用热电偶阵列(应用了西贝克效应)接收了一些合适的放射性物质在衰变时所放出热量再将其转成电能。

放射性同位素的概念和应用

原子有稳定和不稳定两种。不稳定的原子除天然元素外,主要由核裂变或核聚变程中产生碎片形成。这些不稳定的元素在放出α、β、γ等射线后,会转变成稳定的原子。这种不稳定的元素就称为放射性同位素。根据放射性同位素衰变过程放出的射线(或称辐射)的不同,放射性衰变有α、β、γ衰变三大类。放射性同位素技术已经广泛用

放射性同位素技术的应用介绍

放射性同位素技术已广泛应用于国民经济的许多领域,在工业、农业、医学、资源环境、军事科研诸多领域的应用已获得了显著的经济效益、社会效益、环境效益,也是核能利用的重要方面之一。

概述放射性同位素的衰变规律

  放射性元素最基本的特征是不断发生同位素衰变,而衰变的结果是放射性同位素母体的数目不断减少,但其子体的原子数目将不断增加。由于放射性同位素的衰变不受外界温度、压力或化学条件控制,其衰变速率的大小完全是每种放射性元素的固有特性,发生衰变的原子数目仅与时间有关如果起始时刻放射性元素母体的数目为N,经过

真正意义上的癌症诊断治疗试剂来了

  治疗性放射性同位素钪-47是由生物科学放射性同位素开发小组Paul Pellegrini博士、Leena Hogan和Attila Stopic博士在Mike Izard和Ivan Greguric博士的支持下在澳大利亚首次生产的。  钪-47的性质类似于已经在临床试验中使用的镥177,但有一些

放射性同位素的应用同位素示踪法(三)

(二)正式实验阶段 1.选择放射性同位素的剂量   同位素必须能经得起稀释,使其最后样品的放射性不能低于本底,一般来说放射性同位素在生物体内不是完全均匀地被稀释,可能在某些器官、组织、细胞、某些分子中有选择性地蓄积,蓄积的部分放射性就会很强,在这种情况下,应以相关部位对示踪剂的蓄积率来考虑示踪剂用量

放射性同位素的应用同位素示踪法(二)

二、示踪实验的设计原则   设计一个放射性同位素的示踪实验应从实验的目的性,实验所具备的条件和对放射性的防护水平三方面着手考虑。原则上必须从两个主要方面来设计放射性示踪实验:一是必须寻求有效的、可重复的测定放射性强度的条件,二是必须选择一个合适的比活度λqδ(单位是原子/时间/分子,dpm/mol或

放射性同位素的应用同位素示踪法(一)

放射性同位素的应用-同位素示踪法 同位素示踪法(isotopic tracer method)是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,示踪实验的创建者是Hevesy。Hevesy于1923年首先用天然放射性212Pb研究铅盐在豆科植物内的分布和转移。继后Jolit和Curie

海产品中放射线和放射性同位素测试

  2011年3月11日,日本近海发生里氏9.0级地震,引起日本核电站反应堆发生爆炸,全球各国都已在大气中监测到此次爆炸的核污染物。   核电站管理方后续处理非常不力,反应堆核污染废水发生泄漏至今,污染了当地及周边的土壤、地下水和海域,已造成禽畜鱼类体内辐射严重超标甚至部分死亡。更为严重的是,自4

什么是放射性同位素标记法

简单的说,就是用放射性元素标记分子,然后观测这个分子在代谢和生命活动中的变化。因为只有标记了放射性,这些分子才能被观测到。

什么是放射性同位素标记法

3H标记亮氨酸追踪分泌蛋白的合成与分泌过程,首先出现在核糖体--内质网--高尔基体---细胞膜18O标记水和二氧化碳中的氧原子,明确光合作用的氧气中的氧全部来自于水.14C 标记二氧化碳,光合作用的暗反应过程(卡尔文循环)碳原子转移途径.CO2--C3--(CH2O)15N标记脱氧核苷酸,DNA的半

放射性同位素示踪原子的应用介绍

  将一种稳定的化学元素和它的具有放射性的同位素混合在一起,当它们参与各种系统的运动和变化时,由于放射性同位素能发出射线,测量这些射线便可确定其位置与数量。只要测出了放射性同位素的分布和动向,就能确定稳定化学元素的各种作用。这种方法称为示踪原子方法,应用很广泛。  (1)在石油工业上的应用。将含放射

放射性同位素的衰变类型的介绍

  (1)α衰变:放射性元素自发地释放出α粒子的衰变过程叫α 衰变。α粒子质量数为4,由2个质子和2个中子组成,是原子序数为2的高速运动的氦原子。高速运动着的α 粒子流就是α 射线。经过α衰变形成的放射性元素与其母体相比质量数减4,原子序数降低2位。其衰变过程如下:  例如,铀-238经α衰变后生成

放射性核素相关物理研究

  处于远离稳定线的放射性核素,由于其质子和中子数目差异很大,呈现出与稳定核素不同的的新规律,因而成为当今核物理研究的前沿。这些新规律包括原子核存在弥散的边缘、奇异的衰变现象(如双质子或中子发射)和幻数的变化甚至消失等。这些新的规律和性质,也可以应用到核天体物理研究中。  另一个研究前沿是超重元素的