合成生物学领域重大突破,新工具低成本快速创造合成染色体

美国南加州大学研究人员发明的一项突破性新技术,或将彻底改变合成生物学领域。该方法被称为克隆重编程和组装平铺天然基因组DNA(CReATiNG),为构建合成染色体提供了一种更简单且更具成本效益的方法。它可显著推进基因工程,并推动医学、生物技术、生物燃料生产甚至太空探索领域的进步。研究成果20日发表在《自然·通讯》杂志上。 CReATiNG的工作原理是克隆和重组酵母的天然DNA片段,使科学家能够创造出可取代细胞中天然对应染色体的合成染色体。这项创新技术使研究人员能够组合不同酵母菌株和物种之间的染色体,改变染色体结构,并同时删除多个基因。 CReATiNG提供了使用天然DNA片段作为组装整个染色体的机会。该方法显著降低了成本和技术障碍,能提高药品和生物燃料的生产效率,帮助开发癌症等重疾的细胞疗法,并为环境生物修复方法铺平道路。 该方法还能帮助人类在太空或其他恶劣环境中长期生存,人们未来可利用CReATiNG开发能在空间站中繁......阅读全文

克隆化酵母DNA的操作实验——穿梭质粒

实验材料酵母实验步骤1.  构建其必需基因的染色体拷贝已被破坏的单倍体菌株,及带有完整的必需基因和URA3选择标志的YEp质粒。2.  将必需基因亚克隆到YCp载体(带有URA3以外的选择标志),取约10~20 μg 用羟胺或其他技术进行诱变。3.  转化至步骤1的菌株中,在添加了尿嘧啶的省却成分平

设计出新型酵母表达平台

近日,华东理工大学生物工程学院教授蔡孟浩课题组在新型酵母表达设计方面取得重要进展,开发了可响应用户自定义信号的高效酵母蛋白表达平台。相关成果已在线发表于《科学进展》。高水平、可调控的基因表达,对于生物医药和生物制造产业中的蛋白高效率、高质量生产极为重要。酵母作为人们熟知的一种真核微生物,在食药方面的

IBM团队研发新编程语言-梦想克隆人类大脑

  再创造人类智慧是不可能的,而且我们甚至无法理解大脑如何工作。但是Dharmendra Modha正在与技术巨头IBM以及各个大学和政府实验室的团队合作,尝试建造一个大脑。 IBM公司设计的神经突出计算机芯片可视化网络。   这位印度出生的计算机科学家,2006年在硅谷的IBM研究实验室创

酵母人工染色体的结构特征和本质

酵母人工染色体(Yeast artificial chromosomes,简称YAC),是一种能够克隆长达400Kb的DNA片段的载体,含有酵母细胞中必需的端粒、着丝点和复制起始序列,是细胞内具有遗传性质的物体,易被碱性染料染成深色,所以叫染色体(染色质)。其本质是脱氧核苷酸,是细胞核内由核蛋白组成

3篇Cell/MC重磅:人造酵母基因组最新进展

  合成基因组能否为生命提供动力已经引起了合成生物学领域的广泛关注。  2023年11月8日,美国纽约大学Jef D.Boeke、中国科学院深圳先进技术研究院戴俊彪、日本东京工业大学Yasunori Aizawa共同通讯在Molecular Cell在线发表题为“Manipulating the 3

克隆化酵母DNA的操作实验——基因置换技术

实验材料酵母实验步骤一、整合性破坏1.  将基因的内部片段亚克隆到YIP载体。2.  在此内部片段中将质粒线性化。3.  继续整合性转化步骤3(见基本方案1)。二、基因破坏一步法1.  将合适的选择性基因亚克隆到目的基因上,必要时,可在亚克隆的同时引入一个缺失。2.  采用合适的限制性位点,从步骤1

克隆化酵母DNA的操作实验——质粒缺口修复

实验材料酵母实验步骤1.  将目的基因亚克隆到YRp质粒,通过基因内的两个限制性位点在基因中创造一个缺口区,在缺口两侧留下≥100~250 bp 的同源区,凝胶电泳纯化质粒骨架大片段。 2.  用1~10 μg 缺口质粒DNA转化待拯救的含突变等位基因的酵母菌株,通过YRp质粒上的选择基因进行选择,

华大基因子公司宣布收购无锡青兰生物

  2018年7月19日,深圳华大基因股份有限公司(股票代码:300676.SZ)下属子公司北京六合华大基因科技有限公司宣布收购无锡青兰生物科技有限公司(以下简称青兰生物),收购完成后,华大基因将在青兰生物现有技术的基础上,共同开发高通量基因合成技术和下一代DNA合成技术,更好地服务于合成生物学发展

有关酿酒酵母的相关研究

  单染色体酵母  2018年8月《自然》杂志在线发表了一篇论文,覃重军研究团队与合作者在国际上首次人工创建了单条染色体的真核细胞,中国科学家独立创造了全新的自然界不存在的生命。   研究人员历经4年时间,通过15轮的染色体融合,最终成功创建了只有一条线型染色体的酿酒酵母菌株。经过代谢、生理、繁殖功

科学家首次改造了真核生物超过50%的DNA

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/511977.shtm11月8日,合成酵母基因组计划(Sc2.0)的研究人员在《细胞》和《细胞基因组学》上发表了3篇研究,表示制造出了一种基因组中超过50%的DNA序列均是人工合成的酿酒酵母菌株。标准酿酒

世界首例!真核生物全部染色体人工合成被实现

  11月8日,由美国、中国、英国、新加坡、澳大利亚等国合作的“人工合成酵母基因组计划(Sc2.0 Project)”最新研究成果在世界顶级期刊《Cell》及其子刊发布,此次成果发布标志着世界首个真核生物全部染色体的从头设计与合成正式完成,合成生物学领域的科学里程碑项目取得重大进展,为未来合成基因组

全球研究人员致力于创造首个合成真核生物基因组

  10年前,当遗传学家Ronald Davis首次提出,他的同事正在尝试创造人工酵母染色体,并将其放入活细胞时,Jef Boeke并没有太多想法。Davis就职于美国加州斯坦福大学医学院,是一个有远见的人。他提出,实验室酵母是当时合成生物学领域的下一个发展方向。不过,Boeke并不理

-合成生物学的现实挑战

合成生物学标志性人物克雷格·文特尔 图片来源:百度图片  人们似乎正走在成为“造物主”的康庄大道上。   如今的合成生物学正成为各国争抢的科技高地。去年11月,英国政府宣布,将向相关研究机构提供2000万英镑资金,发展合成生物学技术,鼓励合成生物学技术商业化。今年2月,科学家开发出一种新

产油酵母系统生物学研究获进展

  中科院大连化物所研究员赵宗保带领生物质高效转化研究团队在产油酵母系统生物学研究领域取得新进展。相关成果日前发表于《生物燃料技术》杂志。   产油酵母将生物质资源转化为微生物油脂,可用于制造先进液体生物燃料和油脂化工产品。但生物质等廉价原料因含有较丰富的氮源,不利于产油酵母积累油脂。   赵宗

产油酵母系统生物学研究获进展

  中科院大连化物所研究员赵宗保带领生物质高效转化研究团队在产油酵母系统生物学研究领域取得新进展。相关成果日前发表于《生物燃料技术》杂志。   产油酵母将生物质资源转化为微生物油脂,可用于制造先进液体生物燃料和油脂化工产品。但生物质等廉价原料因含有较丰富的氮源,不利于产油酵母积累油脂。   赵宗

酵母菌及其生物学特性简介

  酵母菌是一些单细胞真菌,并非系统演化分类的单元。酵母菌是人类文明史中被应用得最早的微生物。可在缺氧环境中生存。目前已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过出芽生殖来繁殖的称为不完全真菌,或者叫“

国际首例人造单染色体真核细胞在我国创建成功

  近日,中国科学院分子植物科学卓越创新中心/植物生理生态研究所合成生物学重点实验室研究员覃重军研究团队及其合作者在国际上首次人工创建了单条染色体的真核细胞。该成果于北京时间8月2日发表在《自然》上,是合成生物学领域具有里程碑意义的突破。 人造单染色体酵母与天然酵母细胞对比图,两者形态相似,

创建成功!国际首例人造单染色体真核细胞

  近日,中国科学院分子植物科学卓越创新中心/植物生理生态研究所合成生物学重点实验室研究员覃重军研究团队及其合作者在国际上首次人工创建了单条染色体的真核细胞。该成果于北京时间8月2日发表在《自然》上,是合成生物学领域具有里程碑意义的突破。人造单染色体酵母与天然酵母细胞对比图,两者形态相似,但染色体的

Science:第一个真核生物染色体合成

  ——这是合成生物学研究领域的一项重大进展   报道:由纽约大学Langone医学中心系统遗传学研究所主任Jef Boeke领导的一个国际研究小组宣布,他们已经合成了第一个酵母功能性染色体,这是合成生物学领域的一项重大进步。这一研究成果公布在3月27日Science杂志上

里程碑的突破!中国科学家创建单条染色体的真核细胞

  中国科学院分子植物科学卓越创新中心/植物生理生态研究所今早宣布,其合成生物学重点实验室覃重军研究团队与合作者在国际上首次人工创建了单条染色体的真核细胞,该成果于8月2日在国际知名学术期刊《自然》在线发表。该成果完全由中国科学家独立完成,是合成生物学具有里程碑意义的重大突破。  人类能否创造生命?

国际首例人造单染色体真核细胞创建成功

覃重军研究员在观察单染色体酵母的生长情况中国科学院分子植物科学卓越创新中心/植物生理生态研究所合成生物学重点实验室覃重军研究团队与合作者在国际上首次人工创建了单条染色体的真核细胞,该成果于北京时间2018年8月2日在国际知名学术期刊《自然》在线发表。这一成果在中科院B类先导专项“细胞命运可塑性的分子

科研人员在酵母中合成记忆环

哈佛医学院的研究人员成功在酵母细胞中合成了一种以DNA为基础的记忆环。这一成果标志着人们向着合成生物学领域又前进了重要一步。 在利用随机的DNA小片断构建出基因后,Pamela Silver教授的实验室的研究人员不但重构了基因的动态过程,而且还创造出了一种能够预测记忆如何接收的数学模型。这项研究

简述酵母人工染色体的现实意义

  酿酒酵母是第一个被全基因组测序的真核生物,大尺度的设计和重建酵母基因组是对目前酵母领域知识贮备的真实性、完整性和准确性的一个直接考验。化学合成酵母,一方面可以帮助人类更深刻地理解一些基础生物学的问题,另一方面可以通过基因组重排系统,使酵母实现快速进化,得到在医药、能源、环境、农业、工业等领域有重

人造酵母:捅破生命界限的“窗户纸”

  覃重军说自己是个“懒人”,最近5年来,他平均每年的论文还不到1篇;他也不怎么去积极申请经费,每天要么在单位院子里散步,要么就是关在办公室里,琢磨事儿。   他开玩笑说,像他这样的人在别的地方,估计早就被开除了。   但是,他所工作的中国科学院分子植物科学卓越创新中心/植物生理生态研究所非但没

人造酵母:捅破生命界限的“窗户纸”

  覃重军说自己是个“懒人”,最近5年来,他平均每年的论文还不到1篇;他也不怎么去积极申请经费,每天要么在单位院子里散步,要么就是关在办公室里,琢磨事儿。   他开玩笑说,像他这样的人在别的地方,估计早就被开除了。   但是,他所工作的中国科学院分子植物科学卓越创新中心/植物生理生态研究所非但没

中国科学家已经迈入“改造”生命的大门!

  人类能否创造生命?“上帝”的特权能否交由人类自己掌控?选择与人类有1/3同源基因的真核模式生物酿酒酵母为突破口,将其天然16条染色体融合改造为1条巨大染色体,这个合成生物学领域开展的“异想天开”的结构设计与工程化实施,终于梦想成真!  合成生物学领域里程碑式的突破  中国科学院分子植物科学卓越创

世界首例!人工创建单条染色体的真核细胞在中国诞生

   中国科学院分子植物科学卓越创新中心/植物生理生态研究所合成生物学重点实验室覃重军研究团队与合作者在国际上首次人工创建了单条染色体的真核细胞,该成果于北京时间2018年8月2日在国际知名学术期刊《自然》在线发表。这一成果在中科院B类先导专项“细胞命运可塑性的分子机制与调控”以及国家自然科学基金委

克隆化酵母DNA的操作实验——整合性转化

实验材料酵母实验步骤1.  将待研究的基因亚克隆到YIP质粒。 2.  用限制性内切酶在克隆化基因内部切开,使质粒线性化。 3.  用1~10 μg DNA加上担体DNA转化适合的菌株,通过质粒上带的标记进行选择,在选择培养基上纯化几个转化子,制备DNA,应用Southern 杂交确证整合是否发生在

重新设计生命-人工创建单染色体真核细胞

  8月2日,《自然》在线发表我国科学家覃重军研究团队与合作者首次人工创建了单条染色体的真核细胞的成果。以覃重军研究组为主的研究团队完成了将单细胞真核生物——酿酒酵母天然的16条染色体人工创建为具有完整功能的单条染色体。  合成生物学将基因工程化为一个个“生物元器件”,将生命通路设计为电子通路中的“

全基因合成和PCR克隆特点对比?

PCR克隆需要提取表达基因的组织或细胞的RNA,反转录为cDNA,再从cDNA扩增出目的基因。获得的目的基因不大容易做序列上的修改,任何突变体都必须通过后续的突变步骤得到。密码子优化就更不可能了。PCR克隆的另一个重大局限是对表达丰度低的基因、表达时间极短的基因等特殊基因难以成功克隆。比较而言,全基