有望治疗耐药菌感染,纳米“光镊”可捕获和操纵噬菌体

近日消息,瑞士和法国科学家携手,开发出一种芯片上的纳米“光镊”,能以最小光功率捕获、操纵和识别单个噬菌体,有望加速甚至改变基于噬菌体的疗法,治疗具有抗生素耐药性的细菌感染。相关研究论文发表于最新一期《Small》杂志。 抗生素耐药性对人类健康的威胁与日俱增,科学家正在不断寻找治疗耐药菌感染的新方法,噬菌体成为“救星”之一。噬菌体是一种捕食细菌的病毒。但利用噬菌体对抗细菌感染的相关疗法面临一大挑战,即为特定感染找到合适的噬菌体就像大海捞针。目前的方法不仅涉及繁琐的培养程序,而且分析也极其耗费时间。 瑞士洛桑联邦理工学院、法国格勒诺布尔核能研究中心和洛桑大学医院的科学家,开发出一种芯片上的纳米“光镊”,其能用最小的光功率捕获和操纵单个细菌及病毒粒子,并实时获取被捕获微生物的信息。 这种纳米“光镊”利用高度聚焦的激光束,捕获和操纵病毒粒子等微观物体。光会产生梯度力,将粒子吸引到高强度的焦点,有效地将其固定在适当位置,而无需物......阅读全文

有望治疗耐药菌感染,纳米“光镊”可捕获噬菌体

原文地址:http://news.sciencenet.cn/htmlnews/2024/2/518111.shtm

有望治疗耐药菌感染,纳米“光镊”可捕获和操纵噬菌体

  近日消息,瑞士和法国科学家携手,开发出一种芯片上的纳米“光镊”,能以最小光功率捕获、操纵和识别单个噬菌体,有望加速甚至改变基于噬菌体的疗法,治疗具有抗生素耐药性的细菌感染。相关研究论文发表于最新一期《Small》杂志。  抗生素耐药性对人类健康的威胁与日俱增,科学家正在不断寻找治疗耐药菌感染的新

新型光镊可捕获纳米颗粒

  光镊是一项正在飞速发展的技术,近年来,围绕光镊的新型应用层出不穷。光镊是用高度聚焦的激光束的焦点捕获粒子,从而使研究人员无需任何物理接触即可操纵物体的技术。目前,光镊已被用于捕获微米级的物体,然而研究人员日益渴望将光镊的应用扩展到纳米级粒子上去。由法国雷恩第一大学Janine Emile和Oli

利用噬菌体成功治疗一名感染耐药性细菌的患者

  在一项新的研究中,来自比利时伊拉斯谟医院等机构的研究人员利用噬菌体疗法和抗生素的组合,成功地治疗了一名感染了耐药性细菌的成年女性。他们描述了使用这种疗法的原因以及它在其他情况下可能使用的方式。相关研究结果于2022年1月18日发表在Nature Communications期刊上,论文标题为“C

特殊分子可帮助传统抗生素抵御耐药性细菌感染

  来自制药巨头默克公司的一组研究人员曾经研究发现了一种特殊方法,可以促使抗微生物制剂失去杀灭特殊类型细菌的能力,使得细菌变得更加厉害;而近日刊登在Science Translational Medicine上的一项研究报道中,这组研究者描述了他们的最新研究成果,文章中研究者发现了一种特殊分子可以

AEM:噬菌体可扩散抗生素耐药性

  近日,来自维也纳兽医大学(University of Veterinary Medicine)的研究人员通过对从奥地利超市、街边市场等处购买的50份鸡肉样本进行分析,发现有将近一半的样本都被噬菌体污染了,而且这种噬菌体还有能力将抗生素耐药性基因从一种细菌转移到另一种细菌;相关研究发表于Appli

细菌如何获得抗生素耐药性

  一项新的研究发现揭示了抗生素耐药性是如何能在抗生素存在的时候在细菌细胞间传播的,而这些抗生素理应能阻止细菌生长。这些结果揭示,先前对药物敏感的细菌能够在长时间接触抗生素时存活下来以表达其刚刚获得的耐药基因,进而有效地让它们不受抗生素的影响。  这一过程的基础机制——包括一个在几乎所有细菌中都被发

光镊的简介

光镊是采用以芯片为基础的光子共振捕获技术的光阱,能对纳米至微米级的粒子进行操纵和捕获,利用NanoTweezer显微镜纳米光镊转换装置可把现有显微镜升级改造为光镊。注:NanoTweezer显微镜纳米光镊转换装置,是个显微镜附上装置。该装置使研究人员使用现有显微镜能够捕获、操纵纳米级微粒。

光镊的原理

光镊技术基于光辐射压力与单光束梯度力光阱。光辐射压力光照射物体时,由于电磁波具有能量,也有动量,所以,在物体表面形成反射和吸收,同时会对表面形成压力作用,成为光压(光辐射压力)。通过激光的引进,使得光压效应在现实应用中有了很大的作用,特别是科学研究中。梯度力图1 单光束梯度力光阱

光镊的产生

最近,小编被我司的工程师小姐姐安利了一部据说是英国最长寿的科幻剧《神秘博士》(Doctor Who)。在2018年底刚刚回归的十一季中,新上任的第十三任Doctor造出了一件亮眼的神器——升级版音速起子,可谓是上可打外星人,下可开防盗门,有点无所不能的意思。 十三姨和她的起子而在咱们现实的物理学

光镊的定义

由于激光聚集可形成光阱,微小物体受光压而被束缚在光阱处,移动光束使微小物体随光阱移动,借此可在显微镜下对微小物体(如病毒、细菌以及细胞内的细胞器及细胞组分等)进行的移位或手术操作。光镊 ,又被称为单光束梯度力光阱,日常,我们用来挟持物体的镊子,都是有形物体,我们感觉到镊子的存在,然后通过镊子施加一定

光镊技术介绍

光镊技术是美国科学家于1986年发明的。光镊又称为单光束梯度光阱。简单的说.就是用一束高度汇聚的激光形成的三维势阱来俘获,操纵控制微小粒子。自诞生以来,光镊技术已经在微米尺度量级粒子的操纵控制,粒子间的相互作用等方面的研究中发挥了重要作用。1969年.Ashkin通过理论计算认为聚焦的激光能推动尺寸

什么是光镊?

光镊是采用以芯片为基础的光子共振捕获技术的光阱,能对纳米至微米级的粒子进行操纵和捕获,利用NanoTweezer显微镜纳米光镊转换装置可把现有显微镜升级改造为光镊。

光镊揭示肺黏液阻止纳米粒子通过机理

  德国科学家发现了肺黏液中特殊的凝胶结构,揭示了肺黏液阻止纳米粒子通过的原因。该研究加深了对呼吸系统疾病,尤其是感染的理解,将有助于吸入式新药的开发。相关成果发表于美国《国家科学院学报》上。   通常被称之为“痰”的黏液黏附在人体呼吸系统气道的内表面。这种黏性凝胶滋润肺部并防止小颗粒的渗入

基因编辑、噬菌体疗法与抗生素耐药性

  一项概念验证研究提出,噬菌体疗法可能提供一种方法从而解决长期以来难以处理的抗生素耐药性问题。以瞄准病原细菌的定制病毒为基础的噬菌体疗法可能帮助应对抗生素耐药性的激增,但是这种策略也受到一些缺点的影响,尤其是向受感染组织提供噬菌体的困难,以及耐噬菌体基因在细菌之间的频繁转移。Udi Qimron及

Tweez250si高速多光阱纳米光镊胶体操纵应用

手性向列胶体中可重构的打结和连接(2011 Science文章)对高聚物,大分子或者复杂材料中的缺陷线的打结或构建微尺度环是材料科学中富有挑战性的任务。通过使用激光镊作为一个显微操控工具,将手性向列液晶胶体中的微观拓扑缺陷线进行了任意复杂程度的打结和连接。所展示的所有结和连接包括霍普夫连接,大卫之星

光镊技术的产生

光镊技术是美国科学家于1986年发明的。光镊又称为单光束梯度光阱。简单的说.就是用一束高度汇聚的激光形成的三维势阱来俘获,操纵控制微小粒子。自诞生以来,光镊技术已经在微米尺度量级粒子的操纵控制,粒子间的相互作用等方面的研究中发挥了重要作用。1969年.Ashkin通过理论计算认为聚焦的激光能推动尺寸

光镊的技术特点

光镊是对单光束梯度力光阱的形象的称呼,因为它与宏观的机械镊子具有相似的操控物体的功能。但与宏观的机械镊子相比,或者与传统的操控微纳米粒子的显微微针或原子力显微镜等相比,光镊具有不可比拟的优越性。光镊对微粒的操控是非接触的遥控方式,不会给对象造成机械损伤。这使得光镊在生物学研究特别是单细胞单分子研究领

光镊技术的特点

光镊是对单光束梯度力光阱的形象的称呼,因为它与宏观的机械镊子具有相似的操控物体的功能。但与宏观的机械镊子相比,或者与传统的操控微纳米粒子的显微微针或原子力显微镜等相比,光镊具有不可比拟的优越性。光镊对微粒的操控是非接触的遥控方式,不会给对象造成机械损伤。这使得光镊在生物学研究特别是单细胞单分子研究领

光镊技术的应用

光镊的发明使光的力学效应走向实际应用,使人们在许多研究中从被动的观察转而成为主动的操控,同时光镊对于捕获微小粒子、测量微小作用力及生产微小器件等许多方面都有非常重要的意义,现主要从以下几个方面介绍光镊的研究及应用 。光镊在生物细胞上的应用研究对细胞操控的研究光镊操控细胞,可以高选择性的分选细胞或细胞

光镊技术的原理

光镊技术基于光辐射压力与单光束梯度力光阱。光辐射压力光照射物体时,由于电磁波具有能量,也有动量,所以,在物体表面形成反射和吸收,同时会对表面形成压力作用,成为光压(光辐射压力)。通过激光的引进,使得光压效应在现实应用中有了很大的作用,特别是科学研究中。梯度力为了阐明梯度力的概念,以透明介质小球为例说

抗生素失效?用噬菌体“打败”超级细菌

  科技日报北京1月30日电 感染了超级细菌的患者并非无药可救,噬菌体有望成他们的新救星。据《麻省理工技术评论》网站29日报道,随着DNA测序和人工智能的发展,美国一些初创公司正将这种“细菌杀手”变成抗生素的替代品。   随着越来越多的细菌对现有药物产生了抗药性,对替代品的需求很迫切。美国每年大约

JBC:打断细菌间“交谈”有望治疗耐药性细菌感染

  近日,一项刊登在国际杂志the Journal of Biological Chemistry上的研究报告中,来自伊利诺伊大学的研究人员通过研究描述了一种能影响链球菌细胞间“交流沟通”的信号通路,细菌细胞间的这种“交流沟通”被称之为细菌群体感应系统(quorum sensing)。图片来源:UI

AI与超级细菌展开斗争寻找新抗生素药物对抗耐药性感染

麻省理工学院和麦克马斯特大学的研究人员利用一种人工智能算法,发现了一种新的抗生素,可以杀死一种造成许多耐药性感染的细菌。如果开发出来用于病人,这种药物可以帮助打击鲍曼不动杆菌,这是一种经常在医院发现的细菌,可能导致肺炎、脑膜炎和其他严重感染。这种微生物也是造成伊拉克和阿富汗受伤士兵感染的主要原因之一

Mol-Cell:特殊DNA运输技术或可有效攻克耐药性细菌的感染

  抗生素耐药性是目前威胁全球公众健康的主要隐患,其会影响到任何人的健康;如今每年70万人的死亡都归因于抗生素耐药性,2050年这一数字将会增长至1000万;近日,一项刊登在国际杂志Molecular Cell上的研究报告中,来自以色列特拉维夫大学的研究人员通过研究成功促进DNA运输到耐药性细菌病原

英合成抗生素杀灭超级细菌,不会诱发细菌耐药性

  英国林肯大学研究人员合成一种抗生素,能够杀灭“超级细菌”,治愈实验鼠的细菌感染。研究论文刊载于最新一期《医学化学杂志》。   201803271522130378125.jpg   这种抗生素名为Teixobactin,由美国科学家2015年在土壤中发现,是近30年来第一种新型抗生素,可以杀

细菌如何进化出抗生素耐药性?

  目前,研究人员利用高分辨率的低温电子显微镜,在前所未有的细节上,揭示了导致抗生素红霉素(erythromycin)耐药性的细菌核糖体变化。  多重耐药性细菌病原体,对几乎所有可用的抗生素都不敏感,是当今一个重大的公共卫生挑战。各种抗生素的耐药性是如何发展的?这个问题是德国路德维希 -马克西米利安

天然抗生素-有望对抗耐药性感染

   据国外媒体报道,美国科罗拉多大学博尔德分校的化学研究员最新开发出一种合成和优化天然抗生素化合物的新方法,这种化合物未来有一天可能用于对抗致命的耐药性感染,例如金黄色葡萄球菌。  数据表明,美国每年有200多万居民饱受抗生物耐药性感染的折磨。2018年一项研究发现,2015年欧洲有3.3万人死于

噬菌体疗法优于抗生素的方面介绍

  在一定的条件下,噬菌体疗法非常有效,对比抗生素具有一些独特的优势。细菌也会对噬菌体产生耐药性,但是研发新的噬菌体比研发新的抗生素要简单得多。获得新的噬菌体只需要几周,而获得新的抗生素却需要很多年。当细菌产生抗药性时,相关噬菌体也会自然与之一起发生变化。超级细菌出现时,超级噬菌体已随之进化。我们要

噬菌体疗法重出江湖,会是抗生素耐药菌的新克星吗?

  利用CRISPR改造的微生物使细菌的免疫应答攻击其自身。  对病毒进行基因改造,使之引发细菌“自杀”,或许是对抗抗生素耐药性感染的下一个手段。  根据上周在美国蒙大拿州举行的2017年度CRISPR大会上的一份报告,多家公司已经利用CRISPR基因编辑系统改造了这类被称为噬菌体的病毒,使之能够杀