研究揭示苹果树腐烂病菌抑制苹果抗病性机理
近日,西北农林科技大学植保学院黄丽丽教授研究团队通过深度测序、分子生物学、遗传学和生物化学方法,揭示了苹果树腐烂病菌(Valsa mali)VmRDR2基因通过调控VmR2-siR1的生成抑制苹果抗病相关基因的表达,进而抑制苹果抗病性的机理,该研究成果发表在New Phytologist 上。该研究首次揭示了腐烂病菌如何利用RNA干扰(RNAi)通路中的信号扩增组件RdRP来抑制寄主苹果的防御反应,为理解跨界RNAi在植物-病原体互作过程中的作用提供了新的视角,为探究植物与病原体之间的复杂相互作用提供了科学依据。相关论文信息:https://doi.org/10.1111/nph.19867......阅读全文
靶向药物作用机理
靶向药物是近年来出现的高 科技 新型药物,多数人对其不知道或不了解,导致不去选用或在不具备使用条件的情况下选用,那么靶向药物作用机理是什么呢?下面是我为你整理的靶向药物作用机理的相关内容,希望对你有用! 靶向药物作用机理 1、被动靶向 被动靶向制剂是指利用特定组织、器官的生理结构特点,使药
靶向药物作用机理
靶向药物是近年来出现的高 科技 新型药物,多数人对其不知道或不了解,导致不去选用或在不具备使用条件的情况下选用,那么靶向药物作用机理是什么呢?下面是我为你整理的靶向药物作用机理的相关内容,希望对你有用! 靶向药物作用机理 1、被动靶向 被动靶向制剂是指利用特定组织、器官的生理结构特点,使药
脱敏的反应机理
Ⅰ型变态反应是由免疫球蛋白E(IgE)和肥大细胞介导的速发型变态反应 。变应原与肥大细胞上结合的IgE作用,使肥大细胞释放介质,引起临床反应。实验证明 ,进行脱敏治疗后,血清中IgE和免疫球蛋白G(IgG)的水平逐渐上升,到约4个月时,IgE水平开始下降,而IgG的水平则继续上升,到治疗结束时,其水
烟酸的作用机理
烟酸在动物体内可转化为尼可酰胺,包含于脱氢酶的辅酶分子中,是辅酶I(NAD)和辅酶II(NADP)的成分。在体内这两种辅酶结构中的尼克酰胺部分,具有可逆的加氢和脱氢特性,故在氧化还原过程中起传递氢的作用。
化学吸附的机理
可分3种情况:①气体分子失去电子成为正离子,固体得到电子,结果是正离子被吸附在带负电的固体表面上。②固体失去电子而气体分子得到电子,结果是负离子被吸附在带正电的固体表面上。③气体与固体共有电子成共价键或配位键。例如气体在金属表面上的吸附就往往是由于气体分子的电子与金属原子的d电子形成共价键,或气体分
溶菌酶的作用机理
溶菌酶具有抗菌消炎、抗病毒、增强机体免疫力和抑菌作用。细菌的细胞壁由胞壁质组成,胞壁质是由 N-乙酰氨基葡萄糖及 N-乙酰胞壁酸交替组成的多聚物,胞壁酸残基上可以连接多肽,称为肽聚糖。溶菌酶能有效地水解细菌细胞壁的肽聚糖,降低细菌细胞壁的稳定性,随后细菌因细胞内外渗透压不平衡而引起细胞破裂、细胞
溶菌酶的作用机理
溶菌酶以溶解革兰氏阴性细菌及革兰氏阳性菌的细胞壁而具有溶菌作用,因为革兰氏阳性细菌的细胞壁主要是由胞质壁和磷酸质组成的,其中的主要成分胞质壁又是由杂多糖与多肽组成的糖蛋白,而这种杂多糖正是由N-乙酰胞壁酸和乙酰氨基脱氧葡萄糖以β-1,4糖苷键连结的;而溶菌酶能水解N-乙酰葡萄糖胺与 N-乙酰胞壁酸之
溶菌酶的作用机理
溶菌酶能有效地水解细菌细胞壁的肽聚糖,其水解位点是N-乙酰胞壁酸(NAM)的1位碳原子和N-乙酰葡萄糖胺(NAG)的4位碳原子间的β-1.4糖苷键。肽聚糖是细菌细胞壁的主要成份,它是由NAM、NAG和肽“尾”(一般是4个氨基酸)组成,NAM与NAG通过β-1.4糖苷键相连,肽“尾”则是通过D-乳酰羧
脱敏治疗的机理
Ⅰ型变态反应是由免疫球蛋白E(IgE)和肥大细胞介导的速发型变态反应 。变应原与肥大细胞上结合的IgE作用,使肥大细胞释放介质,引起临床反应。实验证明 ,进行脱敏治疗后,血清中IgE和免疫球蛋白G(IgG)的水平逐渐上升,到约4个月时,IgE水平开始下降,而IgG的水平则继续上升,到治疗结束时,其水
酶的作用机理
一、酶作用在于降低反应活化能 在任何化学反应中,反应物分子必须超过一定的能阈,成为活化的状态,才能发生变化,形成产物。这种提高低能分子达到活化状态的能量,称为活化能。催化剂的作用,主要是降低反应所需的活化能,以致相同的能量能使更多的分子活化,从而加速反应的进行。 酶能显著地降低活化能,故能
抗体的作用机理
抗体是由活化的B细胞(浆细胞)产生的针对某一特异性抗原而产生的蛋白质,这种蛋白质可以特异性得与相应的抗原结合,从而中和抗原的毒性作用。对于病原体或者是被病毒感染了的细胞或者是肿瘤细胞,机体由抗体介导的免疫反应主要有ADCC和补体系统,ADCC主要由CTL和NK来执行,在CTL和NK或活化的巨噬细胞表
粮食的陈化机理
生理变化:粮食陈化的生理变化无论是含胚与不含胚的粮食主要表现为酶的活性和代谢水平的变化。粮食在储藏中,生理变化多是在各种酶的作用下进行的。若粮食中酶的活性减弱或丧失,其生理作用也随之而减弱或停止。随着陈化的进行粮食的生活力逐渐丧失,与呼吸有关的酶类,如过氧化氢酶的活性趋向降低,呼吸作用也随之减弱;而
醛基反应机理
羟胺作为亲核试剂与醛上的羰基发生亲核加成.首先带孤对电子的氮原子进攻羰基碳,而羰基碳上的电子向氧迁移使氧呈负电性,原羟胺上的H转移到羰基氧上形成羟基,而后发生消去反应,碳脱羟基,氮脱氢,得到-CH=NOH.反应机理的图谱我这没有软件没办法画出来,如果你有条件可以查阅高等教育出版社出版的《基础有机化学
溶菌酶的作用机理
溶菌酶具有抗菌消炎、抗病毒、增强机体免疫力和抑菌作用。细菌的细胞壁由胞壁质组成,胞壁质是由 N-乙酰氨基葡萄糖及 N-乙酰胞壁酸交替组成的多聚物,胞壁酸残基上可以连接多肽,称为肽聚糖。溶菌酶能有效地水解细菌细胞壁的肽聚糖,降低细菌细胞壁的稳定性,随后细菌因细胞内外渗透压不平衡而引起细胞破裂、细胞质外
蛋白聚集的机理
蛋白质聚集通常是通过一系列过程实现,首先是蛋白内部结构的变化导致形成二聚体或寡聚体,随后聚集体生长,最终形成亚可见或可见的颗粒。1. 初始聚集/成核蛋白质存在一定固有的构象波动或局部结构扰动,这些结构的变动可能会导致蛋白质中具有聚集倾向的序列或“热点(hot spot)”被暴露,进而使其与另外的蛋白
亚胺水解的机理
五元环的酰亚胺比较容易水解,弱碱性下就会开环,但是中等酸性下不会。马来酰亚胺,由吡咯与重铬酸钾反应而得。将1177g重铬酸钾溶于1200ml水及712ml浓硫酸中,加热至35℃,将54g吡咯在搅拌下慢慢加入,反应温度不超过50℃。加毕,在40-50℃保温反应至无吡咯气味时为止。冷却,用玻璃棉去反应生
脱敏的作用机理
Ⅰ型变态反应是由免疫球蛋白E(IgE)和肥大细胞介导的速发型变态反应 。变应原与肥大细胞上结合的IgE作用,使肥大细胞释放介质,引起临床反应。实验证明 ,进行脱敏治疗后,血清中IgE和免疫球蛋白G(IgG)的水平逐渐上升,到约4个月时,IgE水平开始下降,而IgG的水平则继续上升,到治疗结束时,其水
几丁质酶作用机理
根据作用的部位,几丁质酶主要以内切和外切的形式作用于底物。内切是对几丁质糖链的任一部位进行随机水解,产生包括二糖在内的几丁质寡糖。外切是从多糖链的非还原性末端依次切下几丁质二糖(也有人认为是单糖)。纸层析分析表明,微生物的几丁质酶水解几丁质的产物绝大多数是二糖,属外切酶类,但也有报道皱链霉菌(Sp
气孔的开闭机理
气孔的开关与保卫细胞的水势有关,保卫细胞水势下降而吸水膨胀,气孔就张开,水势上升而失水缩小,使气孔关闭。 引起保卫细胞水势的下降与上升的原因主要存在以下学说。 淀粉-糖转化学说 (starch-sugar conversion theory) 光合作用是气孔开放所必需的。黄化叶的保卫细胞
中国科学家发现病原菌全新致病机制
南京农业大学教授王源超领导的科研团队日前取得一项关于作物疫病发生机制的突破性成果,揭示了病原菌攻击宿主的全新致病机制——“诱饵模式”。这是人类首次在更精准的层面认识这类严重危害植物的病原菌分子机理,为改良农作物的持久抗病性提供了新方向。 近日,《科学》在线发表了这项成果。病原菌是一类能够入侵宿
温度升高,稻瘟病不易发生的原因找到了
稻瘟病由丝状子囊真菌稻瘟病菌侵染引起,是水稻中最严重的病害之一,也是植物十大真菌病害之首。有着“水稻癌症”之称的稻瘟病是威胁粮食生产安全的重要因素。田间调查发现,在24~26℃及以下温暖环境稻瘟病容易流行,温度达到28~30℃及以上则不利于稻瘟病的发生,其具体原因一直未知。2月23日,《分子植物》(
我国科学家发现病原菌全新致病机制
南京农业大学教授王源超领导的科研团队日前取得一项关于作物疫病发生机制的突破性成果,揭示了病原菌攻击宿主的全新致病机制——“诱饵模式”。这是人类首次在更精准的层面认识这类严重危害植物的病原菌分子机理,为改良农作物的持久抗病性提供了新方向。 13日,国际知名学术杂志《科学》(《Science》)在
解析植物抗白粉病信号级联领域取得进展
植物与病原微生物间存在信息的相互识别和相互干扰,并通过生物间信息流构成了复杂的相互关系,其中蕴藏着丰富的生物学问题。这是生物信息流先导专项的主要研究内容之一。植物对种间信息进行识别和解码,使其在与病原微生物共同进化的过程中进化出与动物相似的先天免疫及防卫系统。在这个过程中,科学家们已经发现,丝裂
急性肾衰的发病机理
肉眼见肾脏体积增大,质软,切面肾皮质苍白,缺血,髓质呈暗红色。镜下见肾小管上皮变平,有些呈混浊肿胀、变性、脱落,管腔内有管型及渗出物。肾中毒引起者,上皮细胞的变性、坏死集中在近曲小管,其下的基膜保护完整;肾缺血所致者,上皮细胞呈灶性坏死,分散在肾小管各段中,其下的基膜往往断裂、溃破、肾间质内可见
简述靶细胞的机理
美国西北大学的研究人员破解了一些病毒具有的一种叉状蛋白的结构,这些病毒正是通过这种结构进入细胞,继而诱发感染。这种蛋白被称为融合蛋白,即F蛋白,首先发现于副流感病毒5的外表面,在感染细胞前通过F蛋白可以将病毒的衣壳与宿主细胞膜融合。随后,病毒核心内的遗传基因便可以进入宿主细胞,进行自身的复制增殖
超净的作用机理
过氧化氢具有较强的氧化作用,在与组织或血液中的过氧化氢酶接触时,迅速分解,释放出新生态氧,对致病原产生氧化作用,干扰其酶系统的功能而发挥杀死病原微生物的作用。本品能迅速杀灭猪圆环病毒、蓝耳病、口蹄疫、伪狂犬、流感、水疱病、新城疫、喉(支)气管炎,鸭瘟、鸭病毒性肝炎等病毒,致病性大肠杆菌、巴氏杆菌
化学改进剂的机理
化学改进机理可大致分为化学机理、物理机理和电化学机理。在许多场合,化学机理与物理机理是同时存在的,如铂系金属(PGM)化学改进剂在低温时主要是通过化学吸附使挥发性分析物变得稳定;在灰化阶段较高温度时,主要是催化石墨还原分析物或催化分析物热分解生成分析物元素态,再与PGM形成相应的固溶体或化合物;在原
核酸疫苗的免疫机理
核酸疫苗的免疫机理主要可以归纳为以下几点:1 核酸疫苗是近年发展的一种核酸介导的免疫接种疫苗,其本质是含有病原体抗原基因的真核表达载体当它被导入机体后,可被机体细胞所摄取并表达病原体的抗原蛋白,从而诱发机体对该蛋白的免疫反应。随着导入途径和部位的不同可引发全身或局部的免疫反应。在全身性的免疫应答反应
线粒体疾病发病机理阐明
日本熊本大学魏范研准教授、东京大学铃木勉教授的研究小组最新研究发现,一种被称作牛磺酸的功能性氨基酸在线粒体内外蛋白质的生产和保质中具有重要作用,实验表明,通过特定的化学物质维持蛋白质质量,可以改善线粒体疾病的症状。 线粒体是真核细胞内的“能量制造工厂”,其中含有数千种蛋白质,维持着线粒体的各种
线粒体疾病发病机理阐明
有望开发针对性治疗药物 科技日报东京1月28日电 日本熊本大学魏范研准教授、东京大学铃木勉教授的研究小组最新研究发现,一种被称作牛磺酸的功能性氨基酸在线粒体内外蛋白质的生产和保质中具有重要作用,实验表明,通过特定的化学物质维持蛋白质质量,可以改善线粒体疾病的症状。 线粒体是真核细胞内