氮化钽基本性质
......阅读全文
氮化铟的应用特点
氮化铟是一种新型的三族氮化物材料。这种材料的引人之处在于它的优良的电子输运性能和窄的能带,有望应用于制造新型高频太拉赫兹通信的光电子器件。氮化铟(InN)是氮化物半导体材料的一种。常温常压下的稳定相是六方纤锌矿结构,是一种直接带隙半导体材料。
氮化铟的结构特点
氮化铟是一种新型的三族氮化物材料。这种材料的引人之处在于它的优良的电子输运性能和窄的能带,有望应用于制造新型高频太拉赫兹通信的光电子器件。氮化铟纳米结构是研制相关量子器件的基础。然而,一直以来,InN纳米材料的生长往往要利用铟的氧化物或氯化物,这会在氮化铟纳米材料中引入许多杂质,致使材料的光学、电学
叠氮化钡的简介
叠氮化钡亦称“氮化钡”,在水中分解成氢氧化钡和氨气。叠氮化钡作为一种新型的,性能优越的灯用消气剂被越来越多的光源生产厂家采用而替代传统的消气剂。更为突出的是,近年来,由台湾、韩国引进的汽车泡生产线,11Chemicalbook0V起辉器生产线,以及部份节日泡、装饰泡生产线等都要使用叠氮化钡作为消气剂
氮化铝的应用历史
氮化铝于1877年首次合成。至1980年代,因氮化铝是一种陶瓷绝缘体(聚晶体物料为70-210W‧m−1‧K−1,而单晶体更可高达275W‧m−1‧K−1),使氮化铝有较高的传热能力,至使氮化铝被大量应用于微电子学。与氧化铍不同的是氮化铝无毒。氮化铝用金属处理,能取代矾土及氧化铍用于大量电子仪器。氮
氮化钛的生产方法
1.将金属钛放入加热炉中,在氮气气流中,加热至1000~1400℃反应直接得到氮化钛。或者将二氧化钛和碳以一定比例充分混合,放入加热炉中,在氮气气流中加热至1250℃还原氮化制得氮化钛。采用气相沉积法,由四氯化钛、氮气、氢气混合气体可以得到氮化钛涂层。2.往四氯化钛的蒸发器中通入H2和N2的混合气体
氮化铟的基本特性
利用金属有机化学气相淀积生长的氮化铟薄膜的光致发光特性,由于氮化铟本身具有很高的背景载流子浓度,费米能级在导带之上,通过能带关系图以及相关公式拟合光致发光图谱可以得到生长的氮化铟的带隙为0.67cV,并且可以计算出相应的载流子浓度为 n = 5.4×10cm,从而找到了一种联系光致发光谱与载流子浓度
关于氮化物的基本信息介绍
氮化物是氮与电负性比它小的元素形成的二元化合物。由过渡元素和氮直接化合生成的氮化物又称金属型氮化物。它们属于 “间充化合物”,因氮原子占据着金属晶格中的间隙位置而得名。这种化合物在外观、硬度和导电性方面似金属,一般都是硬度大、熔点高、 化学性质稳定,并有导电性。钛、钒、锆、钽等的氮化物坚硬难熔,
偶氮化合物的什么是偶氮化合物AZO
偶氮化合物具有顺、反几何异构体(见几何异构)。反式比顺式稳定。两种异构体在光照或加热条件下可相互转换: 偶氮化合物主要通过重氮盐的偶联反应制得,例如: 氢化偶氮化合物和芳香胺在氧化剂[如NaOBr、CuCl2、MnO2和Pb(OAc)4等】存在下,可被氧化为相应的偶氮化合物;氧化偶氮化合物和硝基化合
钽表面的甲烷等离子渗碳改性技术研究
为了增强钽表面的高温抗氧化、抗腐蚀性能,使用基于空心阴极效应的离子渗碳法,以氩气和甲烷作为渗碳气体对钽片表面进行渗碳实验,利用X射线衍射、扫描电镜、俄歇电子能谱分别对改性层进行成分、形貌及元素化学状态等分析。实验结果表明,在渗碳温度1300℃,渗碳时间20 min的条件下可以得到由Ta C与Ta2C
氮化镓的的化学特性
在室温下,GaN不溶于水、酸和碱,而在热的碱溶液中以非常缓慢的速度溶解。NaOH、H2SO4和H3PO4能较快地腐蚀质量差的GaN,可用于这些质量不高的GaN晶体的缺陷检测。GaN在HCL或H2气下,在高温下呈现不稳定特性,而在N2气下最为稳定。
氮化镓的的电学特性
GaN的电学特性是影响器件的主要因素。未有意掺杂的GaN在各种情况下都呈n型,最好的样品的电子浓度约为4×1016/cm3。一般情况下所制备的P型样品,都是高补偿的。很多研究小组都从事过这方面的研究工作,其中中村报道了GaN最高迁移率数据在室温和液氮温度下分别为μn=600cm2/v·s和μn= 1