美确定阻碍化疗药物发挥作用的蛋白结构

美国科学家近日首次确定了一种名为P-醣蛋白(P-gp)的蛋白结构,该蛋白会将许多化疗药物阻挡在细胞之外,这是癌细胞对化疗药物具有抗性的主要原因之一。弄清这一蛋白的结构将有助于科学家设计更有效的抗癌药物。相关论文发表在3月27日的《科学》(Science)杂志上。 P-gp于1976年被首次发现,它位于肠道、肾脏、脑等处细胞的细胞膜上,功能是作为“看门人”,赶走潜在的有害物质。不过问题在于,它不仅运出对细胞有害的物质,同时也会驱赶针对癌细胞、感染HIV的细胞的药物。 在此次研究中,美国斯克里普斯研究所联合美国德州理工大学,运用X-射线结晶学成功地确定了P-gp的结构。 论文通讯作者、斯克里普斯研究所研究人员Geoffrey Chang说:“确定这一蛋白的结构是一个重要的进展,我们希望它只是个开始,后续还会有更多的突破。这一结构是一个精良的工具,可帮助我们理解P-gp如何将药物运出细胞,并帮助设计能规避P-gp......阅读全文

化疗患者的感染预防

  化疗患者由于白细胞降低容易并发细菌感染,现在临床上提高白细胞的常用药物有基因重组人粒系生长因子GM-CSF和G-CSF等。     常见的感染部位为:口腔、肛周、呼吸道、肠道。     (1)预防口腔感染可用3%的小苏打,1:2000的洗必泰交替漱口(小苏打可预防真菌感染,洗必泰可预防细菌感染)

化疗药物的神经毒性

  化疗是肿瘤的主要治疗手段之一,在取得疗效的同时,还发现这种治疗方法会引起一系列神经系统副作用,如血管并发症、癫痫、情绪异常、认知功能障碍和周围神经病变。化疗引起背根神经节和背角神经元离子通道变化,引起继发性损伤神经病理痛。        尽管现在已开发出许多化疗保护剂,但其作用效果仍不理想。化疗

概述肺癌化疗的原则

  (1)KPS2的肺癌患者不宜进行化疗。  (2)白细胞少于3.0×109/L,中性粒细胞少于1.5×109/L、血小板少于6×1010/L,红细胞少于2×1012/L、血红蛋白低于8.0g/dl的肺癌患者原则上不宜化疗。  (3)肺癌患者肝、肾功能异常,实验室指标超过正常值的2倍,或有严重并发症

化疗的操作实例分析

  患者男性,50岁。诊断为直肠癌,现手术后2周。患者拟行化疗,选择周围静脉的中心静脉穿刺(PICC)。    1、一次性PICC穿刺包的消毒灭菌宜选择?    答:环氧乙烷气体密闭消毒灭菌法。    2、进行皮肤消毒时应选择?    答:0.5%碘伏。    3、护士在穿刺过程中发现手套破损,她应

蛋白质二维结构的结构特点

二维结构是指原子或离子集团中的原子或离子具有在空间沿二维方向的正、反向延伸作有规律排布的结构。

蛋白质三级结构的结构特点

三级结构是由一个已经具有了某些a-螺旋和/或b折叠区的多肽链折叠成一个紧密包裹的、几乎成球形的空间结构,或称为天然构象。三级结构的一个重要特点是在一级结构上离得远的氨基酸残基在三级结构中可以靠的很近,它们的侧链可以发生相互作用。二级结构是靠骨架中的酰胺和羰基之间形成的氢键维持稳定的,三级结构主要是靠

血管生成蛋白的结构特点

中文名称血管生成蛋白英文名称angiogenin定  义最初从人腺癌培养细胞中分离的一种小分子蛋白质。能使新血管在活组织中生长。健康的非癌组织也产生这种小分子蛋白质,有35%的序列与胰核糖核酸酶同源。应用学科生物化学与分子生物学(一级学科),激素与维生素(二级学科)

载脂蛋白CII的结构

  人Apo CⅡ为含79个 氨基酸残基的单链多肽,分子量为9.1kD。先合成的Apo CⅡ含101氨基酸残,其中 22个氨基酸构成信号肽,除去信号肽后则转变为成熟Apo CⅡ。Apo CⅡ的等电点为5.0,其氨基酸组成有3个特点: ⑴缺乏组氨酸和半胱氨酸; ⑵ 含有较多的极性氨基酸; ⑶苏氨酸及丝

样本蛋白的结构性质

了解样本蛋白的结构性质有助于选择最合适的抗体,至少两方面因素需要考虑。待测样本蛋白的结构域:抗体是由各种不同免疫原免疫宿主而制备得来,其中的免疫原包括:全长蛋白、蛋白片断、多肽、全有机体(如:细菌)或细胞,抗体说明书一般都有免疫原的描述,如果打算检测的是蛋白片断或一种特殊的同型物或蛋白全长的某一区

弹性蛋白酶的结构

弹性硬蛋白是一种由丙氨酸、亮氨酸、异亮氨酸等非极性氨基酸残基交联而成的网状结构,它可以耐受酸碱处理,并能抵抗一般蛋白酶的消化。

蛋白质整体的结构

 蛋白质是以氨基酸为基本单位构成的生物大分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。     一级结构:蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。     二级结构:蛋白质分子局区域内,多肽

微管蛋白的结构功能特点

是一种球蛋白,是细胞内微管的基本结构单位。它是由两个蛋白质分子,即α-、β-微管蛋白分子聚合而成的异二聚体;每个这样的二聚体又与两个核苷酸分子相结合,一个属紧密结合,另一个为疏松结合,而且可以快速交换。分子量12万,沉降系数6s。微管蛋白有两个尺寸相等而结构不同的亚基(α和β)。其亚基分子量为5.5

铁硫蛋白的结构功能

铁硫蛋白是含铁的蛋白质,也是细胞色素类蛋白。是在蛋白质的中央含有四个原子,其中两个是铁,另两个是硫,称为【2Fe-2S】,或在蛋白质的中央含有八个原子,其中四个是铁,另四个是硫,称为【4Fe-4S】,并且通过硫与蛋白质的半胱氨酸残基相连。

GNAS蛋白的结构和作用

GNAS作为一个重要的信号转导蛋白,主要功能是在G蛋白偶联受体信号转导途径中,激活腺苷酸环化酶,导致cAMP水平的升高,参与调控细胞生长和细胞分裂。

黄素蛋白的结构与功能

FAD或FMN与酶蛋白部分之间是通过非共价键相连,但结合牢固,因此氧化与还原(即电子的失与得)都在同一个酶蛋白上进行,故黄素核苷酸的氧化还原电位取决于和它们结合的蛋白质,所以有关的标准还原电位指的是特定的黄素蛋白,而不是游离的FMN或FAD;在电子转移反应中它们只是在黄素蛋白的活性中心部分,而其本身

波形蛋白的结构简介

  一个波形蛋白单体,与其他中间丝相似,有着一个中央α螺旋结构域,在前端盖著一个非螺旋的胺基,及于末端盖著一个羧基。两个单体会互相扭曲,形成一个卷曲螺管形状的二聚物。两个二聚物会进一步形成一个四聚物,再与其他四聚物相连成为一片。  α螺旋序列包含一组疏水的氨基酸,这组氨基酸在螺旋表面形成一层“疏水性

简述网格蛋白的结构

  有两种类型的轻链:α链和β链,二者的氨基酸有60%是相同的,但还不知道它们在功能上有什么差别。许多三腿复合物再组装成六边形或五边形网格结构,即包被亚基,然后由这些网格蛋白亚基组装成披网格蛋白小泡。

G蛋白偶联的结构特点

与G蛋白偶联的多种受体具有共同的结构功能特点:分子量40-50kDa左右,由350-500氨基酸组组成,形成7个由疏水氨基酸组成的α螺旋区段,反复7次穿越细胞膜的脂质双层。肽链的N末端在胞膜外,C末端在细胞内。N末端上常有许多糖基修饰。

关于微管蛋白的结构简介

  是一种球蛋白,是细胞内微管的基本结构单位。它是由两个蛋白质分子,即α-、β-微管蛋白分子聚合而成的异二聚体;每个这样的二聚体又与两个核苷酸分子相结合,一个属紧密结合,另一个为疏松结合,而且可以快速交换。分子量12万,沉降系数6s。微管蛋白有两个尺寸相等而结构不同的亚基(α和β)。其亚基分子量为5

核糖核蛋白颗粒的结构

中文名称核糖核蛋白颗粒英文名称ribonucleoprotein particle定  义由RNA和蛋白质组合的颗粒体。如信号识别颗粒、端粒酶、核糖核酸酶P、核糖体、剪接体、编辑体等。应用学科生物化学与分子生物学(一级学科),核酸与基因(二级学科)

肌动蛋白的结构组成

肌动蛋白是细胞中两种细丝的单体 亚基 :细丝,细胞骨架的三个主要成分之一,以及细丝,是肌细胞中收缩装置的一部分。它可以作为称为G-肌动蛋白 (球状)的游离单体存在,或作为称为F-肌动蛋白 (丝状)的线性聚合物 微丝的一部分存在,这两者对于细胞的移动和收缩等重要的细胞功能是必不可少的。

免疫球蛋白的结构

  1.轻链和重链  Ig基本结构:两对四条肽链通过链间二硫键连接形成Ig的单体结构。两条相同的长链称为重链,即H链;另两条相同的短链称为轻链,即L链。  两条重链间,轻链与重链间以二硫键相连,整个Ig分子呈“子呈字型。结构域由链内二硫键所连接的两个β片层所组成。  2.可变区和恒定区  (1)可变

关于Ras蛋白的结构介绍

  Ras蛋白为膜结合型的GTP/GDP结合蛋白,相对分子质量为2.1万,定位于细胞膜内侧.它由188或189个氨基酸组成,它的第一个结构域为含有85个氨基酸残基的高度保守序列,接下来含有80个氨基酸残基的结构域中,Ras蛋白结构轻微不同,除了K2Ras末端25个氨基酸由于不同的外显子而分为A型和B

G蛋白偶联受体结构介绍

G蛋白偶联受体均是膜内在蛋白(Integral membrane protein),每个受体内包含七个α螺旋组成的跨膜结构域,这些结构域将受体分割为膜外N端(N-terminus),膜内C端(C-terminus),3个膜外环(Loop)和3个膜内环。受体的膜外部分经常带有糖基化修饰。膜外环上包含有

蛋白激酶A的结构简介

  PKA全酶以四聚体形式存在,但PKA被靶向到特定组分时,也会在细胞中形成更高阶的结构。经典的PKA全酶结构由两个调节亚基(R亚基)和两个催化亚基(C亚基)组成。催化亚基包含活性位点、在结合和水解ATP的蛋白激酶中发现的一系列典型残基以及结合调节亚基的结构域。调节亚基具有结合到cAMP的结构域,该

铁蛋白的结构特点

铁蛋白的分子结构是由一层蛋白壳围绕着铁和磷酸盐分子组成的铁核,外径12~13nm,分子量500kDa。从不同来源(如人、马、牛蛙和细菌等)的铁蛋白结构特征来看,所有的铁蛋白虽然在一级结构上变化很大(氨基酸序列相似性有时才达到14%),但本质上都有相同的体系结构。蛋白壳均为由24个亚基以高度对称性方式

低密度脂蛋白的结构

每个天然低密度脂蛋白颗粒都能够乳化,即围绕所携带的脂肪酸,使这些脂肪能够在细胞外的水中在身体周围移动。每个颗粒包含一个载脂蛋白B-100分子(ApoB-100,一种具有4536个氨基酸残基和514kDa质量的蛋白质),以及80到100个额外的辅助蛋白质。每个低密度脂蛋白都有一个高度疏水的核心,由称为

蛋白质的基本结构

蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。一级结构(primary structure):氨基酸残基在蛋白质肽链中的排列顺序称为蛋白质的一级结构,每种蛋白质都

本周蛋白的结构及特性

凝溶蛋白又称本周蛋白(BJP)、本琼氏蛋白、本斯·琼斯氏蛋白(Bence-Jones protein),是免疫球蛋白的轻链单体或二聚体,属于不完全抗体球蛋白,由Bence Jones于一多发性骨髓瘤患者尿液中发现。分子量约4万,在pH4.9的酸性环境中加热至40℃~60℃凝固,温度上升到90℃~10

血浆脂蛋白的组成结构

  脂蛋白中脂质与蛋白质之间没有共价键结合,多数是通过脂质的非极性部分与蛋白质组分之间以疏水性相互作用而结合在一起。一般认为血浆脂蛋白都具有类似的结构,呈球状,在颗粒表面是极性分子,如蛋白质,磷脂,故具有亲水性;非极性分子如甘油三酯、胆固醇酯则藏于其内部。磷脂的极性部分可与蛋白质结合,非极性部分可与