光遗传技术助瘫痪肌肉恢复功能比电刺激更为平缓
利用闪光刺激经过遗传修改的神经元,可以恢复瘫痪肌肉的运动功能。英国科学家在小鼠身上开展的这项最新研究,为使用光遗传学技术来治疗脊髓损伤、癫痫以及运动神经元疾病等神经失调疾病铺平了道路。 光遗传学是神经科学领域近来发展最快的技术之一,它涉及到对神经元进行遗传修饰,使其产生一种光敏蛋白,当暴露在光照中时就会发送电信号。到目前为止,光遗传学技术主要被用于研究大脑如何工作。有些团队也在探索将其作为一种治疗手段的可行性,但对大脑进行不可逆的基因操控所引发的担忧成为他们面临的最大障碍。 而在这项最新研究中,伦敦大学学院的琳达·格林史密斯带领的小组在实验室里修改了小鼠的干细胞,然后将它们移植到小鼠的腿部神经中。这样做的目的是,一旦有问题出现,移植的干细胞能够更容易被去除。 据《新科学家》杂志网站近日报道,研究人员在小鼠胚胎干细胞中插入了编码光响应蛋白的藻类基因,通过添加信号分子,使干细胞发育成负责让信号在脊髓和身体其他部......阅读全文
植入式遥测光遗传系统在大鼠长时程光遗传研究的应用
植入式遥测光遗传系统光遗传学是将遗传学(重组DNA技术)与光学相结合的一种细胞生物学研究方法,其利用光学和遗传学手段,通过特异波长的光进行定向性的激活或抑制细胞的发放电活动,从而气动细胞内生物学过程,进而控制生物行为。由于其高度特异性和靶向性,光遗传技术已经越来越广泛的运用到神经科学研究领域中。光遗
光遗传学——照进细胞的一束光
图片来源:Anna Reade 转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。 从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。 Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国
知识分享:光遗传学技术
光遗传学(optogenetics)又称光刺激基因工程(optical stimulation plus genetic engineering),是一种通过光学和遗传学技术在活体动物脑内精准控制细胞行为的技术。由于其高度的时空特异性,光遗传技术广泛应用于神经科学领域的研究。 2010
Science:走向临床的光遗传学
光遗传学诞生后的头十年,大大推动了人们对正常和病理性神经回路的理解。今后的十年,光遗传学将迎来与转化医学的联姻,为疾病治疗带来新的机遇。本期Science杂志上,Bryson等人就展示了这样一个范例,他们将光遗传学工具与再生医学知识结合起来,在周围神经损伤的小鼠模型中恢复了肌肉的功能。 光
光遗传学技术知识(二)
3. 光遗传学所需的辅助技术及基本步骤 光遗传学技术包括的范围是广泛的。主要包括以下几种。图5. 光遗传学技术及其辅助技术 在光遗传操作中,细胞会表达特定的编码光敏蛋白的基因,然后使用光来改变细胞的行为。光遗传学控制细胞功能的基本步骤如下:图6. 光遗传学控制细胞功能的基本步骤 其中,通过病毒感染
光遗传学技术知识(三)
表3.ViGene提供的光敏通道蛋白类型 激活型光敏通道蛋白的应用2015年,Dheeraj Pelluru等发表在European Journal of Neuroscience上题为Optogenetic stimulation of astrocytes in the posterior
光遗传学技术知识(一)
光遗传学(optogenetics)又称光刺激基因工程(optical stimulation plus genetic engineering),是一种通过光学和遗传学技术在活体动物脑内精准控制细胞行为的技术。由于其高度的时空特异性,光遗传技术广泛应用于神经科学领域的研究。2010年,光遗
光遗传学新型光控元件蛋白cpLOV2开发
近日,中国科学院合肥物质科学研究院强磁场科学中心研究员王俊峰课题组与三家国外团队(教授黄韵、教授韩纲和教授周育斌课题组)合作,基于燕麦蓝光受体蛋白LOV2,进行了优化循环排列(Circular permutation)设计,获得了能够提供不同锁定界面的光控开关元件蛋白cpLOV2,进一步拓展了L
Nature:光遗传学的光终于照到肿瘤免疫治疗领域!
“光照一照,你的肿瘤就缩小”听起来像是科幻,或者是某些赤脚民科的夸大其辞,但实际上,这是罗彻斯特大学的研究者们经过谨慎研究的结果,他们把一个非常新颖而有效的武器——光遗传学应用到了肿瘤免疫治疗领域,有效地缓解了实体瘤微环境的免疫抑制,肿瘤明显缩小。 众所周知,实体瘤周围有免疫抑制的微环境,导致
干细胞基因选择影响人群环境适应遗传
紫外辐射与气温是随纬度变化而变化的环境因子。在人类遗传上,是否存在同时导致对这两种环境因子变化适应的基因,一直是学界探寻的课题。我国多机构研究人员合作的一项最新成果,在进化遗传学国际期刊《分子生物学与进化》上回答了这一疑问。 据中国科学院昆明动物研究所宿兵研究员介绍,现代人在20至30万年
华裔女学者Science解析干细胞表观遗传
来自约翰霍普金斯大学(Johns Hopkins University)的研究人员针对干细胞表观遗传性质,发现了干细胞在不对称分裂过程中的表观遗传学方式,认为这是其维持干性的一种重要机制,相关成果公布在Science杂志上。文章的通讯作者是约翰霍普金斯大学华裔女科学家陈昕(Xin Chen),她在中
光遗传技术为细胞结构研究带来机遇
转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。图片来源:Anna Reade 从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。 Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国纽
PNAS推翻长期的光遗传学观念
最近,意大利的研究人员采用一种新的光遗传学方法,推翻了长期持有的模式――光如何被转换为眼睛中的电子信号。相关研究结果发表在最近的《PNAS》杂志。 我们感知视觉世界的能力,依赖于光感受器中的细胞把光转换成电信号。视杆细胞光感受器的外节堆满了数以千计的脂质膜盘――内含有吸收光子的分子,它能够触
PNAS推翻长期的光遗传学观念
最近,意大利的研究人员采用一种新的光遗传学方法,推翻了长期持有的模式——光如何被转换为眼睛中的电子信号。相关研究结果发表在最近的《PNAS》杂志。 我们感知视觉世界的能力,依赖于光感受器中的细胞把光转换成电信号。视杆细胞光感受器的外节堆满了数以千计的脂质膜盘——内含有吸收光子的分子,它能够触发
《Science》光遗传技术开创癌症研究新见解
8月31日《Science》报道,一种形式的非小细胞肺癌(non-small cell lung cancer,NSCLC)突变可能通过模糊细胞对关键生长信号的感知来驱动肿瘤形成。由加州大学旧金山研究所领导的这项研究对许多人类癌症缺陷机制具有重要意义。 健康细胞依靠Ras/Erk生长信号途径中
光遗传技术为细胞结构研究带来机遇
转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。图片来源:Anna Reade 从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。 Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国纽约
Cell:光遗传学重大成果
瑞典卡罗林斯卡学院(Karolinska Institutet)的研究人员首次在小鼠大脑中鉴定到了注意力神经元,操纵这种细胞的活性可以增强小鼠的注意力。这项研究发表在一月十四日的Cell杂志上,有助于进一步理解大脑额叶(frontal lobes)的工作机制。 额叶在大脑认知功能中起到了重
《自然》2016热点技术—精准光遗传学
《Nature Methods》盘点2015年度技术,选出了最受关注的技术成果:单粒子低温电子显微镜(cryo-EM)技术。 除此之外,也整理出了2016年最值得关注的几项技术,分别为:细胞内蛋白标记(Protein labeling in cells)、细胞核结构(Unraveling nuc
美国院士Nature光遗传学重要成果
大多数人可能认为,我们用舌头感知五种基本味道——甜、酸、咸、苦和鲜味,然后将信息发送至我们的大脑“告诉”我们所尝的是什么味道。现在,科学家们颠覆了这一观点,证实在小鼠中通过操控大脑中的一些细胞群可以改变尝味的方式。他们的研究结果在线发表在《自然》(Nature)杂志上。 研究的领导者、美国国家
光遗传疗法可成功恢复部分视力
近期,一名40年前确诊的RP患者,在接受光遗传疗法(optogenetic therapy)治疗后,成功恢复部分视力。这一研究结果,发表在《Nature Medicine》上。在这项研究中,研究人员选择ChrimsonR作为光敏蛋白,光照灵敏度峰值为590 nm。研究人员将编码Chrimso
光遗传学之父Nature发表重要成果
斯坦福大学的研究人员在大鼠特定大脑区域发现了一小群神经细胞,它们的信号活动可以解释动物间冒险偏好的极大差异。这种活动不仅可以预测,并有效地决定了动物是决定冒险还是坚持安全的选择。这项研究描述在3月23日的《自然》(Nature)杂志上。 斯坦福大学生物工程学、精神病学及行为科学教授、
Cell-Sys:光!控制胚胎干细胞分化
发表于国际杂志Cell Systems上的一项研究中,来自美国加州大学旧金山分校(UC San Francisco)的研究人员通过研究开发出了一种方法,首次利用光束来精确控制胚胎干细胞的分化,从而使其可以分化成为神经细胞来进行精确的体外研究提供一定帮助。 研究者Matthew Thomson说
Nature揭示控制干细胞衰老的遗传开关
人在老年时许多的疾病会随之而来,这是一个令人难过的事实。尽管许多疾病可能并不危及生命,但它们剥夺了生活的乐趣。肌肉衰减征(sarcopenia)就是这样一种疾病,其会导致肌肉和力量丧失,这就是一些老年人会丧失耐力、行走以及呼吸困难的原因。 不幸的是,除了锻炼尚无针对这一疾病的治疗方法,随着
干细胞研究突破:不经遗传修饰实现重编程
诱导性多潜能干细胞是被国际生命科学界誉为具有里程碑意义的创新之举,需要通过特定基因的表达将体细胞重编程逆转为干细胞。然而Stem Cell上3月16日刊登的一篇文章报道了来自美国Buffalo大学的研究小组证明成人的皮肤细胞可以转化为不带遗传修饰的神经嵴细胞(干细胞的一种类型),这些干细胞可以产
干细胞多能性与表观遗传调控的综述
7月23日,Nature Review Molecular Cell Biology杂志在线发表了中国科学院生物物理研究所刘光慧研究员同美国索尔科生物学研究所(The Salk institute for Biological Studies)研究人员合作的关于干细胞多能性与表观遗传调控
Nature-子刊:让干细胞变身的遗传秘方
能够在实验室中安全、可靠地生成人类血液中所有不同类型的细胞,向着现实迈进了关键的一步。 在发表于今天《自然通讯》(Nature Communications)杂志上的研究论文中,由威斯康星大学麦迪逊分校的干细胞研究员Igor Slukvin领导的一个研究小组报告称,发现了获得“空白状态”( b
Cell:光遗传学揭示脑瘤的惊人秘密
高级别胶质瘤是一种相当致命的脑瘤,其生存率近三十年来几乎没有得到改善。斯坦福大学医学院的一项最新研究表明,大脑皮层的神经活性有助于高级别胶质瘤的生长。 研究人员将侵袭性的人类脑瘤移植到小鼠大脑,构建了高级别胶质瘤模型。这项研究首次向人们展示,大脑活性能够刺激肿瘤生长,相关论文发表在四月二十三日
光遗传学之父Cell发表突破成果
最近,斯坦福大学的科学家们结合两种尖端技术,发现前额叶皮层中的神经元被用来响应奖励或厌恶经历,这可能对治疗精神疾病和成瘾具有重要的意义。 前额叶皮层在哺乳动物的大脑中扮演了一个神秘但却主要的作用。它与情绪调节相关,前额叶皮层中的不同细胞似乎能响应正面和负面的体验。然而,前额叶皮层是如何支配奖励
最新研究揭示亚洲棉光籽性状遗传机制
近日,中国农业科学院棉花研究所联合河南大学开展了亚洲棉光籽(无短绒)性状基因定位以及遗传机制研究,揭示了亚洲棉光籽性状相关基因GaFZ及其上游的非编码片段在棉花短绒发育过程中的功能,对培育环境友好型棉花育种具有重要意义。相关研究结果发表在国际知名期刊《植物生物技术》上。 棉花纤维是天然的纺织
光遗传疗法让失明者恢复部分视力
一位近40年前被诊断患有视网膜色素变性的患者,在接受一种新的光遗传学疗法后恢复了部分视力。 5月24日,《自然—医学》发表的这项案例研究是神经退行性疾病患者,在接受光遗传疗法后获得功能恢复的首次报道。 研究人员表示,光遗传疗法是先将特定细胞进行基因改造,使其对光脉冲产生响应,再利用光脉冲控制