Science新论文挑战诺贝尔奖得主经典理论
与人类细胞中最常见的一个过程有关的一项新研究发现,将使我们的理解发生“范式转变”。 来自邓迪大学、马克斯普朗克生物物理化学研究所、哥根廷大学和牛津大学的研究人员,观察发现钾通道中的离子透入并不遵循以往预测的信号通路。他们的研究结果发表在《科学》(Science)杂志上。 钾通道是散布于人体几乎所有细胞类型表面的微小孔道,在脑细胞间的信号传送中起作用,也帮助控制了我们的心跳频率。当它们不能正常运作时,与包括神经退行性疾病和心脏病在内的一系列疾病存在关联。 这些通道发挥高速过滤器的作用,在通道极其快速的打开和关闭中让钾离子通过。 该领域中以往的一种理论,是导致美国生物化学家Roderick MacKinnon获得2003年诺贝尔化学奖的研究工作的一个组成部分。MacKinnon的研究工作提出,当钾离子通过这一通道时被水所分开,由于高静电排斥离子与离子之间不太可能相互接触。 在这篇Science新文章中,研究小组称发现了......阅读全文
钾离子通道,作用机理
钾离子通道的通透特异性允许钾离子通过质膜,而阻碍其他离子通透-特别是钠离子。这些通道一般由两部分组成:一部分是通道区,他选择并允许钾离子通过,而阻碍钠离子。另一部分是门控开关,根据环境中的信号而开关通道。结构展示在蛋白库编号1bl8,展示的是一种细菌的钾离子通道的通道区部分,它由四个同源的跨膜蛋白质
研究利用仿生钾离子通道实现单价离子筛分
向自然学习是永恒的主题。生命中的离子通道具有离子选择性、门控性及整流性,可实现特定离子的选择性跨膜运输。钾离子通道(KcsA)是常见的生命体离子通道,可实现K+/Na+的高效选择性传输,选择比达104。生物钾离子通道具有埃米级的尺寸以及丰富的表面结合位点,每秒可以转运108个钾离子。 纳米结构
钾离子通道一直开放吗
钾离子通道不是一直开放。钾离子通道,就是指通透特异性允许钾离子通过质膜,而阻碍其他离子特别是钠离子通透的通道。离子通道是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道,主动运输的离子载体称为离子泵。
生物膜离子通道作用于钾通道的药物
作用于钾通道的药物钾通道分布广泛,有数十种类型;⑴瞬时外向钾通道:广泛存在于心肌细胞生理特性:电压依赖性、时间依赖性、频率依赖性、失活。表现为瞬时外向电流(Ito),随后关闭。Ito是参与心肌复极主要离子流。⑵延迟外向整流钾通道:延迟外向整流钾通道电流(Ik)可分为快激活整流钾电流(Ikr)和慢激活
钠钾离子通道与钠钾泵有什么区别
1、就其本质而言,钠钾泵是哺乳动物细胞膜中普遍存在的离子泵。其本质是ATP酶,可以将细胞内的ATP水解为ADP自身被磷酸化而发生构象改变。离子通道是贯穿于细胞膜脂质双层,中央有亲水性孔道的膜蛋白,没有分解ATP的能力。2、就其转运物质的方式而言,钠钾泵可以完成钠离子和钾离子的逆浓度梯度和(或)电位梯
应用FLIPR-钾离子通道检测试剂盒对hERG通道阻断...(一)
应用FLIPR 钾离子通道检测试剂盒对hERG通道阻断剂特性的分析简介药物诱导的hERG (human ether-a go-go-related gene) 离子通道被阻断可能导致严重的致死性室性心律失常——尖端扭转型室性心动过速(torsade de pointes, TdP)。近年来,一批
应用FLIPR-钾离子通道检测试剂盒对hERG通道阻断...(二)
应用FLIPR 钾离子通道检测试剂盒对hERG通道阻断剂特性的分析电生理实验为便于结果比较,所有同样的hERG 通道阻断剂均在IonWorks Barracuda1 全自动膜片钳系统进行了检测得到相应的IC50 值(图4)。为观察化合物的频率依赖性效应,电压刺激命令均以0.1Hz 频率在加样前后分别
hERG-钾离子通道高通量安全性筛选(二)
材料和方法稳定转染人Kv11.1 通道的中国仓鼠卵巢细胞(CHO)来自ChanTest 公司(Cleveland, OH)。本实验中所使用的所有试剂和药品均来自Sigma-Aldrich(St. Louis, MO).hERG 离子通道多次加样方法的开发多次加样的方法中细胞需要进行多次的溶液交换并且
hERG-钾离子通道高通量安全性筛选(一)
hERG 钾离子通道高通量安全性筛选 ——IonWorks Barracuda高通量全自动膜片钳系统多次加样检测方法的优势 特点:• 超高通量——可以满足大批量化合物筛选的需求• 每小时> 6,000数据点• 384通道同时记录• 超低的运行成
钾[渗]通道的定义
中文名称钾[渗]通道英文名称potassium [leak] channel;K+-channel定 义动物细胞质膜上的能选择性地使K+通过的电压门控离子通道。应用学科细胞生物学(一级学科),细胞生理(二级学科)
钾[渗]通道的定义
中文名称钾[渗]通道英文名称potassium [leak] channel;K+-channel定 义动物细胞质膜上的能选择性地使K+通过的电压门控离子通道。应用学科细胞生物学(一级学科),细胞生理(二级学科)
脑智卓越中心发现钾离子通道调控新机制
1月6日,《美国国家科学院院刊》(PNAS)在线发表了题为DNA topoisomerase 2-associated proteins PATL1 and PATL2 regulate the biogenesis of hERG K+ channels的研究论文。该研究由中国科学院脑科学与智
生物膜离子通道的离子通道特性
离子通道特性1、选择性:指一种通道优先让某种离子通过,而另一些离子则不容易通过该种通道的特性。例如钠通道开放时,钠离子可通过,而钾离子则不能通过。2、开关性:离子通道存在两种状态,即开放和关闭状态。多数情况时,离子通道是关闭的,只在一定的条件下开放。通道由关闭状态转为开放的过程称为激活,由开放转为关
生物膜离子通道的离子通道分类
离子通道的开放和关闭,称为门控。根据门控机制的不同,将离子通道分为三大类:⑴电压门控性,又称电压依赖性或电压敏感性离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如钾、钠、钙、氯通道四种主要类型,各型又分若干亚型。⑵配体门控性,又称化学门控性离子通道。由递质与通道蛋白质受体分子上的结合位
离子通道分类
离子通道的开放和关闭,称为门控。根据门控机制的不同,将离子通道分为三大类:⑴电压门控性,又称电压依赖性或电压敏感性离子通道:因膜电位变化而开启和关闭,以最容易通过的离子命名,如钾、钠、钙、氯通道四种主要类型,各型又分若干亚型。⑵配体门控性,又称化学门控性离子通道。由递质与通道蛋白质受体分子上的结合位
生物膜离子通道的疾病离子通道改变
疾病离子通道改变病变中的离子通道改变是指由于某一疾病或药物引起某一种或几种离子通道的数目、功能甚至结构变化。如老年性痴呆症(AD):大量的研究发现患者体内的一些内源性致病物质如β淀粉样蛋白、β淀粉样蛋白前体、早老素蛋白 与钾通道、钙通道功能异常密切相关,可能通过影响钾通道、钙通道的本身结构和或调节过
生物膜离子通道的离子通道病介绍
编码离子通道亚单位的基因发生突变/ 表达异常或体内出现针对通道的病理性内源性物质时,使通道的功能出现不同程度的削弱或增强,从而导致机体整体生理功能的紊乱,出现某些先天性和后天获得性疾病。可分为先天性离子通道病(geneticchannelopathy) 和获得性离子通道病(acquiredchann
羟自由基激活的钾离子通道参与胁迫诱导的细胞凋亡
Conflux + I&E Flux + I&M Flux = 细胞内外离子/分子同时检测完整方案羟自由基激活的K+外流参与细胞凋亡羟自由基激活的钾离子通道参与胁迫诱导的细胞凋亡 图注:活性氧诱导拟南芥根部K+外流A:1mM Cu/a处理后伸长区K+外流图;B:10mMH2O2诱导后成熟区K+外流图
生物膜离子通道的离子通道生理功能
⑴提高细胞内钙浓度,从而触发肌肉收缩、细胞兴奋、腺体分泌、钙依赖性离子通道开放和关闭、蛋白激酶的激活和基因表达的调节等一系列生理效应。⑵在神经、肌肉等兴奋性细胞,钠和钙通道主要调控去极化,钾主要调控复极化和维持静息电位,从而决定细胞的兴奋性、不应性和传导性。⑶调节血管平滑肌舒缩活动,其中有钾、钙、氯
钾离子的性质
钾离子[1]在溶液中无氧化性,在熔融状态下显极弱的氧化性,一般不与其它离子反应。 但高氯酸根离子可以与钾离子结合成微溶的高氯酸钾沉淀,钾离子其它沉淀有酒石酸氢钾、六氯铂酸钾、氟锆酸钾、钴亚硝酸钠钾、四苯硼酸钾等。 钾离子的焰色反应为紫色,需透过蓝色钴玻璃(防止Na[1]
离子通道的特性
1、选择性:指一种通道优先让某种离子通过,而另一些离子则不容易通过该种通道的特性。例如钠通道开放时,钠离子可通过,而钾离子则不能通过。2、开关性:离子通道存在两种状态,即开放和关闭状态。多数情况时,离子通道是关闭的,只在一定的条件下开放。通道由关闭状态转为开放的过程称为激活,由开放转为关闭状态的过程
什么是离子通道
离子通道是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道,主动运输的离子载体称为离子泵。生物膜对离子的通透性与多种生命活动过程密切相关。例如,感受器电位的发生,神经兴奋与传导和中枢神经系统的调控功能
什么是离子通道
离子通道是各种无机离子跨膜被动运输的通路。生物膜对无机离子的跨膜运输有被动运输(顺离子浓度梯度)和主动运输(逆离子浓度梯度)两种方式。被动运输的通路称离子通道,主动运输的离子载体称为离子泵。生物膜对离子的通透性与多种生命活动过程密切相关。例如,感受器电位的发生,神经兴奋与传导和中枢神经系统的调控功能
Nature:在线粒体中鉴定出一种ATP敏感性的钾离子通道
线粒体以ATP的形式为内源性反应提供化学能,它们的活性必须满足细胞能量需求,但是将这种细胞器性能与ATP水平相关联在一起的机制却知之甚少。 在一项新的研究中,来自意大利帕多瓦大学的研究人员证实一种存在于线粒体中的蛋白复合物介导ATP依赖性钾电流,这种蛋白复合物称为mitoKATP。相关研究结果
钾离子电极使用步骤
1. 将钾离子电极与参比电极一起,使用磁力搅拌器在去离子水中清洗电极电位。例如溶液温度25度时候,清洗电位一般在80mv左右,若溶液温度低于25度时,则电位值要求适当降低。 2. 电极清洗完毕,应对电极进行校正,在两个以上不同浓度的钾离子标准溶液中由稀到浓测试电极电位并进行记录。根据记录的mv
电压门控离子通道介绍
电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。
人电压门控钾通道自身抗体定性分析
人ELISA试剂盒实验原理本试剂盒应用双抗原夹心法测定标本中人电压门控钾通道自身抗体(VGKC Ab)水平。用纯化的抗原包被微孔板,制成固相抗原,往包被单抗的微孔中依次加入电压门控钾通道自身抗体(VGKC Ab),再与HRP标记的抗原结合,形成抗原-抗体-酶标抗原复合物,经过彻底洗涤后加底物TMB显
电压门控离子通道的定义
电压门控离子通道(Voltage-gated Ion Channel)主要有钠、钾、钙等离子通道,通常由同一亚基的四个跨膜区段围成孔道,孔道中有一些带电基团(电位敏感器)控制闸门。
离子通道型受体的作用
离子通道型受体(ionotropic receptor),离子通道型受体是一类自身为离子通道的受体。这种离子通道受体与受电位控制的离子通道不同,它们的开放或关闭直接接受化学配体的控制,这些配体主要为神经递质。离子通道受体信号转导的最终作用是导致了细胞膜电位改变,即是通过将化学信号转变成为电信号而影响
电压门控离子通道的定义
当跨膜电位发生变化时,电敏感器在电场力的作用下产生位移,响应膜电位的变化,造成闸门的开启或关闭。孔道口的孔径和电荷分布形成离子选择器,但并非对其它离子绝对不通透。