走进国内首个中子散射科研平台探索科学的“微观世界”

中子散射不但可以告诉我们“原子在哪里”,还可以告诉我们“原子在做什么”。在我国,建设自己的中子散射科研平台,自主开展中子散射实验研究,不仅是老一辈科学家心中的梦想,也是当前我国航空、航天、核工业等重大装备前沿研究领域的迫切需求。 伴随着我国首个中子散射科研平台正式投入运行的喜讯,11月5日,科技日报记者走进中国工程物理研究院核物理与化学研究所,探访这个能让我国科学家用“自己的眼睛”洞悉“微观世界”的重大科研装备。 “章鱼”和它的“触角”们 原子核由两种微粒组成,一种是带正电的粒子——质子,一种是不带电的中性粒子——中子,利用中子测定物质微观结构的实验方法被称为中子散射。这就好像将一束光打在半透明的物体上,有的光透过物体,有的光被反射或折射,这样就能够从各个方向上看到物体。中子散射能获取X射线以及其他射线不能获取的物质内部信息。 在核物理与化学研究所中子散射技术与应用研究室展示板上,记者首次看到这个庞然大物的全貌——它......阅读全文

中子散射:微观世界研究利器

1932年,查德威克发现了中子,人们认识到原子核由带正电的质子和不带电的中子构成。中子的发现及应用是20世纪最重要的科技成就之一。当中子入射到样品上时,与它的原子核或磁矩发生相互作用,产生散射。通过测量散射的中子能量和动量的变化,可以研究在原子、分子尺度上各种物质的微观结构和运动规律,告诉人们原子和

MnNiGa中取向磁性biskyrmion态的小角中子散射研究

  近年来,量子材料的研究已经成为凝聚态物理领域的新热点。量子材料通常具有非平凡的拓扑特性。磁性斯格明子(skyrmion)材料是一类具有纳米尺度的拓扑自旋涡旋结构的量子材料。因其具有拓扑及超低电流密度驱动等特性,在基础理论研究及器件化商业应用研究等领域得到了广泛关注。磁性双斯格明子(biskyrm

物理所铁基高温超导机理的中子散射研究取得进展

  高温超导机理一直是凝聚态物理前沿研究中的一个重要课题。在目前已发现的铜氧化物和铁砷化物两大高温超导家族中,母体均具有长程反铁磁序,随着空穴/电子掺杂的引入而压制静态反铁磁序并出现高温超导电性,而动态的反铁磁涨落则存在于整个相图区域。这一图像促使人们相信反铁磁涨落在高温超导微观机理中扮演着不可或缺

物理所铁基高温超导机理的中子散射研究取得重要进展

  高温超导机理一直是凝聚态物理前沿研究中的一个重要课题。在目前已发现的铜氧化物和铁砷化物两大高温超导家族中,母体均具有长程反铁磁序,随着空穴/电子掺杂的引入而压制静态反铁磁序并出现高温超导电性,而动态的反铁磁涨落则存在于整个相图区域。这一图像促使人们相信反铁磁涨落在高温超导微观机理中扮演着不可或缺

喜讯|中国散裂中子源微小角中子散射谱仪成功出束

  记者从中国科学院高能物理研究所东莞研究部获悉,1月4日下午,中国散裂中子源(CSNS)微小角中子散射谱仪成功出束,开始带束调试。首次出束测试获得的小角模式样品处中子飞行时间谱、微小角模式VSANS探测器处中子强度分布等结果表明谱仪光路与设计相符,标志着谱仪多狭缝技术方案有效实现,机械设备研制与安

高能非弹性中子散射谱仪在东莞揭牌

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512165.shtm

中子、中子源、散裂中子源科学研究

什么是中子?  中子由查德威克于1932年发现,是组成物质的基本粒子之一,不带电,因此被称为中子。   原子核由带正电的质子和不带电的中子组成  在宇宙中,中子含量非常丰富,几乎占了所有可见物质的一半。但对于物理和生物材料领域的研究来说,缺少一种足够亮度的中子源。正如我们希望能够在黑暗中有一盏明灯,

中子散射技术确定铁硒超导体磁基态

  复旦大学物理系赵俊课题组利用中子散射技术在铁硒(FeSe)超导体中首次观测到了一种新奇的自旋为1的向列性量子无序顺磁态,这一磁基态的发现对理解FeSe类高温超导机理提供了新的角度,相关研究成果7月19日发表于《自然—通讯》。  超导电性是指在某一温度之下材料的电阻完全消失的现象。高温超导电性往往

第四届亚太中子散射会议在东莞召开

12月4日,由中国散裂中子源承办的第四届亚太中子散射会议在广东东莞开幕,来自海内外400多名专家学者将通过7天超240场报告展开深入交流,推动国际中子散射科学技术及应用的发展。中国科学院院士、中国散裂中子源工程总指挥陈和生担任大会主席,东莞市副市长黎军出席并致辞。记者获悉,自2018年8月,中国散裂

我国首个中子散射科研平台在绵阳投运

  记者5日从中国工程物理研究院(简称中物院)获悉,我国首个中子散射科研平台日前已在该院核物理与化学研究所完成建设并投入运行。利用我国科学实验用反应堆“中国绵阳研究堆”提供稳定中子束的该平台,目前已“搭载”国内首个中子应力分析谱仪等9台达到国际水平的中子散射和中子成像装置。这也标志着我国在探索科学的

物理所最佳掺杂铁基超导体中子散射研究取得新进展

  高温超导机理一直是凝聚态物理领域前沿难题之一。作为继铜氧化物超导体之后的第二个高温超导家族,2008年发现的铁基超导体也是通过在三维反铁磁母体中掺杂电子或空穴载流子来抑制反铁磁长程序而获得超导态。目前的研究普遍认为,自旋涨落在两者的超导电子配对过程中均扮演着重要角色,特征之一表现为在超导样品的磁

粤港澳中子散射科学技术联合实验室启动依托散裂中子源

  1月15日,由中国科学院高能物理研究所散裂中子源科学中心、东莞理工学院、香港城市大学、澳门大学共同建设的粤港澳中子散射科学技术联合实验室(以下简称“联合实验室”)在高能所东莞分部举行揭牌和授牌仪式。  联合实验室将依托大科学装置——中国散裂中子源,开展中子散射科学技术相关学科的研究,引进和培养中

中德中子散射联合实验室挂牌仪式在京举行

  12月14日,“中国原子能科学研究院—德国于利希研究所中子散射联合实验室”(简称 “中德中子散射联合实验室”)挂牌仪式在中国原子能科学研究院中国先进研究堆现场举行。德国于利希研究所副所长Sebastian Schmidt、中国原子能科学研究院党委书记张昌明等出席仪式并为实验室挂牌。  

走进国内首个中子散射科研平台-探索科学的“微观世界”

  中子散射不但可以告诉我们“原子在哪里”,还可以告诉我们“原子在做什么”。在我国,建设自己的中子散射科研平台,自主开展中子散射实验研究,不仅是老一辈科学家心中的梦想,也是当前我国航空、航天、核工业等重大装备前沿研究领域的迫切需求。  伴随着我国首个中子散射科研平台正式投入运行的喜讯,11月5日,科

中子散射及反射技术在软物质科学领域的应用和发展

  4月19日至21日,“中子散射及反射技术在软物质科学领域的应用和发展”培训会在中科院化学所举行。培训会特别邀请了美国国家标准技术研究院(NIST)中子散射中心三位资深科学家、化学所韩志超研究员等国内从事中子散射与反射研究与仪器设计研发专家参与授课,授课内容包括中子散射技

中山大学高能非弹性中子散射飞行时间谱仪揭牌

原文地址:http://news.sciencenet.cn/htmlnews/2023/11/512160.shtm 中新网东莞11月12日电 (许青青 李建平 朱嘉豪)中山大学与散裂中子源科学中心合作建设的高能直接几何非弹性中子散射飞行时间谱仪(以下简称“中大谱仪”)12日在位于东莞的中国散

第二届全国中子散射会议在四川绵阳召开

  第二届全国中子散射会议(暨国家中子源多学科应用研讨会-2014)于11月5日至7日在四川绵阳成功召开。会议由中国物理学会中子散射专业委员会主办(该委员会挂靠在中国科学院高能物理研究所),中国工程物理研究院核物理与化学研究所承办,中国散裂中子源和中国原子能科学研究院协办。参会代表200余名,来自5

中子衍射在材料研究领域的应用

中子衍射技术是一种测量材料或工程部件内部的三维应力状态的方法,在焊接、热加工与热处理过程中残余应力测量方面有着广泛的应用。

中国散裂中子源小角散射谱仪主探测器完成安装

  8月25日,中国散裂中子源(CSNS)最后一台大型精密设备——小角散射谱仪(SANS)主探测器完成安装。  主探测器是小角散射谱仪的关键设备,其采用120根8mm位置灵敏型3He管组成阵列,有效探测面积为1m×1m,探测效率大于60%(2Å),位置分辨率好于8mm*8mm(FWHM),自重约80

汤姆逊散射研究获突破

  上海交通大学特别研究员陈民等与美国内布拉斯加林肯大学研究人员合作,日前在高阶全光非线性汤姆逊散射的实验和理论研究中获重要突破,首次实验观察到高达500个光子同时与单电子的汤姆逊散射现象,得到能量超过20 MeV的伽马光子辐射。相关研究在线发表于《自然—光子学》。  光子与电子的弹性散射被称为汤姆

Mie氏散射理论的实验研究

    众所周知,Mie氏散射理论主要用于从亚微米至微米的尺寸段,在微米以下至纳米的光散射则近似为形式更明晰简单的瑞利散射定律,而对大于微米至毫米的大粒子则近似为意义明确的夫琅和费衍射规律。用这些定律可成功解释各类散射现象,并指导颗粒的粒度分布的测试技术,Mie氏散射理论是对处于均匀介质中的各向均匀

中国散裂中子源小角散射谱仪完成束线钢屏蔽体出厂验收

  12月9日,中国散裂中子源(CSNS)小角散射谱仪(SANS)束线钢屏蔽体在合肥科烨电物理设备制造有限公司完成了验收。  SANS束线钢屏蔽体是小角散射谱仪的重要组成部分,它能有效屏蔽高能粒子辐射,同时为其它部件提供支撑与安装空间。SANS束线钢屏蔽体材料为Q235B,包括入射准直屏蔽体和回收站

香港城大与中科院中子散射科学技术联合实验室揭幕

  香港城市大学3日宣布,该校携手中国科学院高能物理研究所成立的中子散射科学技术联合实验室日前正式揭幕,以加强与位于东莞的中国散裂中子源在专才培训、科研和设备上的合作。  这是香港唯一研究中子散射的实验室,将提升香港在中子散射领域的发展。中科院和香港裘槎基金会自2015年起,支持城大建立中子散射联合

中国散裂中子源小角散射谱仪样品前准直结构完成安装

  8月12日,中国散裂中子源(CSNS)小角散射谱仪(SANS)样品前准直结构完成现场安装。  样品前准直结构是小角散射谱仪入射光路的核心部件,它位于靶站外和样品室之间,作为入射束准直的中间段,将靶站慢化器产生的中子引出至样品室,并约束和准直成束。样品前准直结构由两段准直器组成,中间真空连通,总重

散射的拉曼散射

拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光

散射的拉曼散射

拉曼散射(Ramanscattering),光通过介质时由于入射光与分子运动相互作用而引起的频率发生变化的散射。又称拉曼效应。1923年A.G.S.斯梅卡尔从理论上预言了频率发生改变的散射。1928年,印度物理学家C.V.拉曼在气体和液体中观察到散射光频率发生改变的现象。拉曼散射遵守如下规律:散射光

拉曼散射现象的发现与研究

1928年C.V.拉曼实验发现,当光穿过透明介质被分子散射的光发生频率变化,这一现象称为拉曼散射,同年稍后在苏联和法国也被观察到。在透明介质的散射光谱中,频率与入射光频率υ0相同的成分称为瑞利散射;频率对称分布在υ0两侧的谱线或谱带υ0±υ1即为拉曼光谱,其中频率较小的成分υ0-υ1又称为斯托克斯线

Mie氏散射理论的实验研究(一)

众所周知,Mie氏散射理论主要用于从亚微米至微米的尺寸段,在微米以下至纳米的光散射则近似为形式更明晰简单的瑞利散射定律,而对大于微米至毫米的大粒子则近似为意义明确的夫琅和费衍射规律。用这些定律可成功解释各类散射现象,并指导颗粒的粒度分布的测试技术,Mie氏散射理论是对处于均匀介质中的各向均匀同性的单

Mie氏散射理论的实验研究(二)

如图3所示,我们让入射光以θ角入射到样品池,入射光经过两次折射进入散射介质,以散射介质内的入射光为标准,顺时针方向上散射光与该入射光之间的夹角即为散射角。由图3可以很明显地看出随着θ角的减小,前向散射右侧部分大于48.75°的散射光将会陆续地由样品池透射出,同样的后向散射右侧部分大于228.75°的

研究解释中子星碰撞产生的神秘喷流

  一篇论文深入探究了8月17日探测到的中子星合并所释放的伽马射线、X射线和无线电波的来源。该研究排除一束离轴的辐射喷流为碰撞发生后无线电波余辉的来源,并提出中子星合并和短硬伽马暴(SGRBs)之间的联系有待考证。相关成果12月21日在线发表于《自然》。图片来源于《自然》  GW170817是首次探