宁波材料所在纤维素化学转化技术研究中取得进展

随着石化资源的日益减少和环境问题不断恶化,生物质因其可再生性、二氧化碳零排放等良好环境效应成为全球关注的焦点。纤维素作为非粮食作物,广泛存在于农林废弃物(如玉米秸秆、甘蔗渣以及废弃木屑等),是地球上最丰富的生物质资源,每年产量超过1000亿吨。将纤维素通过化学或者生物法水解制备葡萄糖,进而生产乙醇、糠醛、乙酰丙酸等燃料或者化学品,从而改变传统能源结构,为人类提供绿色能源与化学品成为了可能。 纤维素是由葡萄糖分子以β-1,4-糖苷键连接而成的直链大分子,分子链内、链间形成大量氢键,使得纤维素性质很稳定,不熔融并且不溶于普通溶剂。因此,纤维素的水解往往需要高温高压的苛刻条件,纤维素水解的同时造成了水解产物葡萄糖的分解,从而造成了葡萄糖的产率低,选择性差。中国科学院宁波材料技术与工程研究所生物基高分子材料团队在朱锦研究员和那海宁副研究员的带领下,运用“去除结晶-平稳水解的两步法”技术成功实现了纤维素在温和条件下的高效、高转化率水......阅读全文

影响纤维素水解的主要因素

2.1 酶复合物的组分及其比例 微生物产生的纤维素酶复合物不一定都有前述三类酶,而是因种类不同,差异较大。酶复合物的组分及其比例决定了它对纤维素的水解程度,组分较齐,比例适当的酶复合物对纤维素的水解能力较强。以研究得较多的菌种为例,丝状真菌能产生大量的纤维素酶(20g/L),三类酶都有,而且比例适当

影响纤维素水解的主要因素

1 酶复合物的组分及其比例 微生物产生的纤维素酶复合物不一定都有前述三类酶,而是因种类不同,差异较大。酶复合物的组分及其比例决定了它对纤维素的水解程度,组分较齐,比例适当的酶复合物对纤维素的水解能力较强。以研究得较多的菌种为例,丝状真菌能产生大量的纤维素酶(20g/L),三类酶都有,而且比例适当,一

纤维素酶水解作用机理

     纤维素分子是由许多吡喃型的D-葡萄糖残基通过β-1,4葡萄糖苷键连接而成的多糖链,天然纤维素为直链式结构,链与链之间有晶状结构和排列次序较差的无定形结构;纤维素分子以结晶或非结晶方式组合成微原纤维,微原纤维集束形成微纤维,以微纤维为基本构造构成纤维素。纤维素的结晶度一般在30%~80%之间

纤维素酶水解作用机理

纤维素分子是由许多吡喃型的D-葡萄糖残基通过β-1,4葡萄糖苷键连接而成的多糖链,天然纤维素为直链式结构,链与链之间有晶状结构和排列次序较差的无定形结构;纤维素分子以结晶或非结晶方式组合成微原纤维,微原纤维集束形成微纤维,以微纤维为基本构造构成纤维素。纤维素的结晶度一般在30%~80%之间。纤维素酶

版纳园低温纳米催化水解纤维素技术取得进展

  近日,中科院西双版纳热带植物园生物能源组在纤维素高选择性水解葡萄糖技术领域上取得新进展,相关研究成果在国际著名生物能源期刊Bioresource Technology发表,并申请ZL1项。  由于化石能源逐渐枯竭、能源需求不断增加和环境保护日益重要等因素的影响,人们已经认识到寻求清洁、可再生能源

影响纤维素酶水解酶活的因素

影响纤维素酶水解酶活的因素有:底物,纤维素酶活以及反应环境(包括温度,pH和其他一些参数)。为了提高酶水解的速度和处理量,现在的研究重点主要在优化水解工艺和提高纤维素酶活。纤维二糖,甚至于葡萄糖对纤维素的酶活都有抑制作用,目前采用的减少抑制的方法有:采用高浓度的酶;水解过程中补充β-葡萄糖苷酶;在水

CLSM助力纤维素酶水解碱处理秸秆可视化

  木质纤维素是地球上储量最丰富的生物质资源之一,纤维素酶降解技术是生物转化高效利用木质纤维素的关键。纤维素酶水解木质纤维素过程中木质素的作用方式(阻止纤维素酶吸附?还是存在非降解性吸附?)一直存在争议,纤维素酶对植物细胞壁具体降解方式的研究也未见报道。因此,木质纤维素的有效前处理和纤维素酶水解植物

版纳植物园发现水解微晶纤维素的新方法

  天然纤维素分子间和分子内存在大量的氢键,具有较高的结晶度,具有聚集态结构的特点。在生物燃料的生产过程中,最为关键的步骤是纤维素充分水解成为葡萄糖。纤维素的高结晶度,强烈地阻碍了酸、碱、酶或者固体催化剂与纤维素分子内部的接触,极大地延长了水解的周期、增加了催化剂的用量。为消除天然纤维

宁波材料所在纤维素化学转化技术研究中取得进展

  随着石化资源的日益减少和环境问题不断恶化,生物质因其可再生性、二氧化碳零排放等良好环境效应成为全球关注的焦点。纤维素作为非粮食作物,广泛存在于农林废弃物(如玉米秸秆、甘蔗渣以及废弃木屑等),是地球上最丰富的生物质资源,每年产量超过1000亿吨。将纤维素通过化学或者生物法水解制备葡萄糖,进而生产乙

重离子辐照预处理木质纤维素提高酶水解产率及其机理

  生物质是地球上分布最广泛的可再生能源之一,在替代传统的化石燃料、缓解能源危机、解决环境污染等方面发挥着不可替代的作用。其中,木质纤维素作为一类蕴藏量最丰富的生物质资源,主要由纤维素、半纤维素、木质素组成,纤维素和部分半纤维素可经纤维素酶分解转化为可发酵糖,生产燃料乙醇及其他高附加值的产品。由于木

饲用纤维素酶的分类

纤维素酶的种类很多,根据功能的差异分为3类,即内切纤维素酶、外切纤维素酶、β-葡萄糖苷酶。①内切纤维素酶(又称内切-β-1,4-葡聚糖酶,羧甲基纤维素酶)。主要作用:在纤维素酶分子内部随机断裂β-1,4-糖苷键, 将长链纤维素分子截短,产生大量小分子纤维素,如纤维素糊精、纤维二糖及葡萄糖;②外切纤维

纤维素酶的主要分类

按组成与功能纤维素酶根据其催化反应功能的不同可分为内切葡聚糖酶(1,4-β-D-glucan glucanohydrolase或endo-1,4-β-D-glucanase,EC3.2.1.4),来自真菌的简称EG,来自细菌的简称Cen、外切葡聚糖酶(1,4-β-D-glucan cellobilh

纤维素酶的分类介绍

按组成与功能纤维素酶根据其催化反应功能的不同可分为内切葡聚糖酶(1,4-β-D-glucan glucanohydrolase或endo-1,4-β-D-glucanase,EC3.2.1.4),来自真菌的简称EG,来自细菌的简称Cen、外切葡聚糖酶(1,4-β-D-glucan cellobilh

纤维素酶的结构及作用机理

纤维素酶是指能水解纤维素β-1,4葡糖糖苷键,使之变为纤维二糖和葡萄糖的一种多酶体系。纤维素酶由三类组成:(1)内切葡聚糖酶(endo-1,4-β-D-glucanase,EC3-2-1-4,也称EG酶或Cx酶);(2)外切葡聚糖酶(exo-1,4-β-D-glucanase,EC3-2-1-91)

纤维素酶的结构及作用机理

纤维素酶是指能水解纤维素β-1,4葡糖糖苷键,使之变为纤维二糖和葡萄糖的一种多酶体系。纤维素酶由三类组成:(1)内切葡聚糖酶(endo-1,4-β-D-glucanase,EC3-2-1-4,也称EG酶或Cx酶);(2)外切葡聚糖酶(exo-1,4-β-D-glucanase,EC3-2-1-91)

纤维素酶的结构及作用机理

纤维素酶是指能水解纤维素β-1,4葡糖糖苷键,使之变为纤维二糖和葡萄糖的一种多酶体系。纤维素酶由三类组成:(1)内切葡聚糖酶(endo-1,4-β-D-glucanase,EC3-2-1-4,也称EG酶或Cx酶);(2)外切葡聚糖酶(exo-1,4-β-D-glucanase,EC3-2-1-91)

粗纤维的测定

粗纤维:是指动物饲料中那些稀酸、稀碱难溶的、家畜(特别是反刍动物)不容易消化的部分。其中主要成分是纤维素和木质素。膳食纤维:是指人们的消化系统或者消化系统中的酶不能消化、分解、吸收的物质。纤维素是高分子化合物,分子式以(C6H10O5)n表示,不溶于任何有机溶剂,对稀酸或稀碱相当稳定,但纤维素与硫酸

粗纤维的测定

  粗纤维:是指动物饲料中那些稀酸、稀碱难溶的、家畜(特别是反刍动物)   不容易消化的部分。其中主要成分是纤维素和木质素。   膳食纤维:是指人们的消化系统或者消化系统中的酶不能消化、分解、吸收的物质。   纤维素是高分子化合物,分子式以(C6H10O5)n表示,不溶于任何有机溶剂,对稀酸或

纤维素酶按降解机理

纤维素酶反应和一般酶反应不一样,其最主要的区别在于纤维素酶是多组分酶系,且底物结构极其复杂。由于底物的水不溶性,纤维素酶的吸附作用代替了酶与底物形成的ES复合物过程。纤维素酶先特异性地吸附在底物纤维素上,然后在几种组分的协同作用下将纤维素分解成葡萄糖。1950年,Reese等提出了C1-Cx假说,该

纤维素酶按降解机理分类介绍

  纤维素酶反应和一般酶反应不一样,其最主要的区别在于纤维素酶是多组分酶系,且底物结构极其复杂。由于底物的水不溶性,纤维素酶的吸附作用代替了酶与底物形成的ES复合物过程。纤维素酶先特异性地吸附在底物纤维素上,然后在几种组分的协同作用下将纤维素分解成葡萄糖。  1950年,Reese等提出了C1-Cx

纤维二糖简介

纤维二糖是一种有机物,化学式为C12H22O11,白色结晶粉末,是纤维素水解的产物,也是纤维素的基本结构单元,不能为麦芽糖酶水解,可为苦杏仁酶水解,是一种还原糖。在自然界不存在游离的纤维二糖,在乙醇水溶液中可得细粒结晶的纤维二糖(真空干燥后),它与纤维素的关系如同麦芽糖与淀粉的关系一样,水解后也得两

青岛能源所在纤维素仿酶水解技术研究中取得新进展

  纤维素水解技术是纤维素生物液体燃料产业化的关键问题之一。由于少数跨国企业的技术垄断,使纤维素酶价格居高不下。掌握具有自主产权的纤维素水解技术成为我国纤维素生物液体燃料产业化的关键。  近日,中国科学院青岛生物能源与过程研究所牟新东研究员带领的绿色化学催化团队在仿酶智能酸催化纤维素

葡萄糖苷酶的主要应用介绍

葡萄糖苷酶因为其特性,主要应用于两个方面纤维素的水解与利用:主要涉及各种β-葡萄糖苷酶与纤维素水解相关酶类,目的即将难溶的纤维素变为可溶的、易于利用的小分子寡糖。功能性低聚糖的合成:主要涉及葡萄糖苷酶的转糖苷活力,目的即通过具有转苷活力的葡萄糖苷酶合成功能性低聚葡聚糖、低聚麦芽寡糖、低聚纤维寡糖等可

关于葡萄糖苷酶的应用介绍

  葡萄糖苷酶因为其特性,主要应用于两个方面  纤维素的水解与利用:主要涉及各种β-葡萄糖苷酶与纤维素水解相关酶类,目的即将难溶的纤维素变为可溶的、易于利用的小分子寡糖。  功能性低聚糖的合成:主要涉及葡萄糖苷酶的转糖苷活力,目的即通过具有转苷活力的葡萄糖苷酶合成功能性低聚葡聚糖、低聚麦芽寡糖、低聚

葡萄糖苷酶的应用介绍

葡萄糖苷酶因为其特性,主要应用于两个方面纤维素的水解与利用:主要涉及各种β-葡萄糖苷酶与纤维素水解相关酶类,目的即将难溶的纤维素变为可溶的、易于利用的小分子寡糖。功能性低聚糖的合成:主要涉及葡萄糖苷酶的转糖苷活力,目的即通过具有转苷活力的葡萄糖苷酶合成功能性低聚葡聚糖、低聚麦芽寡糖、低聚纤维寡糖等可

葡萄糖苷酶的应用介绍

葡萄糖苷酶因为其特性,主要应用于两个方面纤维素的水解与利用:主要涉及各种β-葡萄糖苷酶与纤维素水解相关酶类,目的即将难溶的纤维素变为可溶的、易于利用的小分子寡糖。功能性低聚糖的合成:主要涉及葡萄糖苷酶的转糖苷活力,目的即通过具有转苷活力的葡萄糖苷酶合成功能性低聚葡聚糖、低聚麦芽寡糖、低聚纤维寡糖等可

关于葡糖苷酶的应用介绍

  葡萄糖苷酶因为其特性,主要应用于两个方面  纤维素的水解与利用:主要涉及各种β-葡萄糖苷酶与纤维素水解相关酶类,目的即将难溶的纤维素变为可溶的、易于利用的小分子寡糖。  功能性低聚糖的合成:主要涉及葡萄糖苷酶的转糖苷活力,目的即通过具有转苷活力的葡萄糖苷酶合成功能性低聚葡聚糖、低聚麦芽寡糖、低聚

纤维素酶的种类

1 葡聚糖内切酶(endo-1,4-β-D-glucanase E.C 3.2.1.4,来自真菌简称EG,来自细菌简称Len),又称为C1酶,这类酶作用于纤维素内部的非结晶区,随机水解β-1,4-糖苷键,将长链纤维素分子截短,产生大量带非还原性末端的小分子纤维素。葡聚糖内切酶分子量介于23~146之

概述碳水化合物的基本分类

  碳水化合物根据其能否水解和水解后的生成物可分为下述三类。  一、单糖类  单糖是糖的基本单位,不能再行水解。自然界中的单糖以四个、五个或六个碳原子最为普遍,食品中以戊糖和己糖较多,尤以己糖分布最广。  戊糖在自然界中大都以形成多糖的成分而存在,如阿拉伯糖存在于半纤维素中,稻草、木材中含有木糖的成

碳水化合物的基本分类

碳水化合物根据其能否水解和水解后的生成物可分为下述三类。单糖类单糖是糖的基本单位,不能再行水解。自然界中的单糖以四个、五个或六个碳原子最为普遍,食品中以戊糖和己糖较多,尤以己糖分布最广。戊糖在自然界中大都以形成多糖的成分而存在,如阿拉伯糖存在于半纤维素中,稻草、木材中含有木糖的成分。戊糖不能被人体吸