科研人员在生殖细胞中治愈小鼠遗传疾病
12月5日,《细胞研究》期刊在线发表了中科院上海生科院生化与细胞所李劲松研究组和吴立刚研究组以及北京大学汤富酬研究组的一项合作研究成果,研究人员利用CRISPR-Cas9技术,在小鼠的精原干细胞中修复了遗传缺陷,产生了完全健康的后代。专家认为,这项研究为人类基因治疗提供了一个新的思路。 据悉,彻底根治遗传疾病的方法是通过基因治疗手段在生殖细胞中修复改变的遗传物质,并将正确的遗传物质传递给下一代,产生健康的个体,从而在人群中彻底清除遗传缺陷。然而,目前存在的基因修饰手段不能有效地在生殖细胞中进行遗传编辑。 2013年,李劲松研究组首次证明CRISPR-Cas9技术能够高效地用于遗传疾病的治疗。而这种通过直接胚胎注射的方法存在两个问题:一是新生小鼠被治愈的机率较低,约为30%;二是存有少量实验脱靶现象。 为更好地解决这些问题,研究人员从白内障小鼠的睾丸中获取了携带纯和遗传突变的精原干细胞。研究人员将CRISPR-Cas9转......阅读全文
遗传重组热点基因研究
遗传重组(它涉及DNA股的断开和重接以产生新的基因组合)是真核细胞生物中的一种基本的生物学过程。在哺乳动物减数分裂的时候,在这一专门化的细胞分裂过程中,来自母系和父系的染色体被一分为二并产生出精子细胞和卵子细胞,而重组过程则将同源染色体的不同部分连接在了一起,从而导致了后代中的基
细胞遗传学的研究
从细胞遗传学衍生的分支学科主要有体细胞遗传学——主要研究体细胞,特别是离体培养的高等生物体细胞的遗传规律;分子细胞遗传学——主要研究染色体的亚显微结构和基因活动的关系;进化细胞遗传学——主要研究染色体结构和倍性改变与物种形成之间的关系;细胞器遗传学——主要研究细胞器如叶绿体、线粒体等的遗传结构;
体细胞遗传学的研究
高等生物的遗传学研究一般都通过分析遗传性状在有性生殖子代中的分布和出现频率来进行。可是高等生物的生殖周期长,子代个体数目少,对于人类来讲则又不能在严格的实验条件下进行杂交实验,所以给研究带来了一定的困难。但是作为高等生物个体生命活动的基本单位的每一体细胞一般都包含着全套基因组,因此将体细胞在离体
遗传研究重塑欧洲人基因历史
绳纹器文化时期居民在约5000年前开始将亚欧基因带入欧洲。 如何制造一个现代欧洲人?多年来,最受欢迎的“配方”是:从4.5万年前生活在欧洲的采集狩猎者的DNA开始,加入9000年前迁入到该大陆的早期农民的遗传基因。现在,针对古老DNA的多方面研究指出,大部分欧洲人还有其他1/3的“成分”:亚洲游牧
干细胞基因选择影响人群环境适应遗传
紫外辐射与气温是随纬度变化而变化的环境因子。在人类遗传上,是否存在同时导致对这两种环境因子变化适应的基因,一直是学界探寻的课题。我国多机构研究人员合作的一项最新成果,在进化遗传学国际期刊《分子生物学与进化》上回答了这一疑问。 据中国科学院昆明动物研究所宿兵研究员介绍,现代人在20至30万年
细胞质基因的普通遗传现象分析
(一)高等植物叶绿体的遗传有几种高等植物有绿白斑植株,如紫茉莉、藏报春、加荆介等。1901年柯伦斯在紫茉莉中发现有一种花斑植株,着生绿色,白色和花斑三种枝条。在显微镜下观察,绿叶和花斑叶的绿色部分其细胞中均含正常的叶绿体,而白色或花斑叶的白色部分,细胞中缺乏正常的叶绿体,是一些败育的无色颗粒。他分别
研究人员首次确定基因“剪刀”可加速特定基因遗传
近日,研究人员首次使用被称为基因“剪刀”的基因组技术CRISPR加快哺乳动物特定基因的遗传。这种极具争议的基因驱动策略几年前在实验室饲养的昆虫中得到证明。因为它能在整个物种中迅速传播一种基因,从而激发了人们利用致命基因消灭疟蚊等害虫的梦想。现在,被消灭的对象或许还有具有破坏作物或能致病的哺乳动物
多基因遗传与数量遗传
多基因遗传(polygenic inheritance)是指生物和人类的许多表型性状由不同座位的较多基因协同决定,而非单一基因的作用,因而呈现数量变化的特征,故又称为数量性状遗传。多基因遗传时,每对基因的性状效应是微小的,故称微效基因(minor gene),但不同微效基因又称为累加基因
细胞遗传学——比较基因组杂交(CGH)
· Comparative Genomic Hybridization (CGH) CGH is a molecular Cytogenetic method of screening a tumor for genetic changes. The alterations are
光遗传技术为细胞结构研究带来机遇
转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。图片来源:Anna Reade 从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。 Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国纽约
光遗传技术为细胞结构研究带来机遇
转基因斑马鱼胚胎上的闪亮蓝光让科学家选择性地激活光敏感转录因子。图片来源:Anna Reade 从现在开始10年后,这种技术将会成为发育生物学和细胞生物学界人人使用的工具。 Kevin Gardner打开一个小冰箱模样的培养器,看着里面闪烁的蓝光,这种场景经常让他想起上世纪70年代的美国纽
体细胞遗传学的简史及研究
简史 1907年,美国学者R·G·哈里森第一次把神经细胞在体外培养成活。1956年,美国学者T·T·帕克使单个哺乳动物体细胞在体外培养的条件下分裂增殖成功,首次提供了用微生物学方法在严格控制的条件下进行体细胞遗传学研究的材料,简化了体外获得高等动物体细胞克隆的程序,把体细胞遗传学的研究推进到一
Nature:最大规模遗传研究寻找“高学历”基因
由253名科学家组成的一个国际研究小组,完成了迄今为止最大规模的一项遗传研究,鉴别出了与个体接受正规教育的年数相关的74个遗传变异。这项研究发布在5月11日的《自然》(Nature)杂志上。 论文的通讯作者、南加州大学Dornsife信函、艺术与科学学院经济和社会研究副教授Daniel Ben
简述转座酶基因遗传标记的研究
转座酶基因遗传标记的研究的目的是为了了解常州地区新生儿呼吸道分离到的肺炎链球菌(Sp)接合型转座子存在状况。方法采用PCR扩增技术对新生儿病房分离到47株Sp菌进行转座酶基因遗传标记——i班Tn916/Tn1545转座酶基因检测。结果47株Sp菌中39株(83.0%)携带intTn916型或/和
遗传学新动向:人类基因敲除研究
数十年来,生物学家们一直在小鼠或其他动物模型中,通过失活目的基因来进行功能研究。现在这种基因敲除(knockout)研究有了更理想的模型,那就是人类。 当然,这并不是说像处理小鼠那样,对人类进行遗传学改造。事实上,研究者们是通过分析成百上千的人类基因组,在其中寻找失活某个基因的天然突变。他们希
研究发现吸烟成瘾主要因为遗传基因
网易探索8月14日讯 据英国《每日邮报》网站报道,美国科学家经过研究发现,吸烟成瘾主要是遗传基因使然,这一发现将有助于帮助开发戒烟药品。 美国密歇根大学医学教育系的研究人员称已经找到一种基因,它通常会让那些首次尝试抽烟的人产生一种“飘飘然的感觉”, 从而使人很易上瘾,而且这种基因有可能增加吸烟者患
遗传发育所在细胞凋亡及基因组稳定性研究中取得新进展
基因组稳定性对于真核生物的正常生长发育以及增殖是必不可少的前提条件。然而,在生存过程中,生物体基因组由于经常受到一些内在和外在因素的影响,造成各种形式的DNA损伤。为了保持基因组的稳定性,真核生物中已经形成了一种在进化上高度保守的机制,来修复应对各种DNA损伤。当DNA损伤严重到无法正确修复时,
-Nat-Met:新型单细胞技术助力表观遗传研究
跨学科组织的专家们首次为临床医生实现“无艾滋病时代”的目标设计了最新的改进方案,方案融合了尖端的生物医学技术以及基础的行为干预方法。该研究发表在《美国医学协会杂志》上。 这项方案是由国际抗病毒组织IAS-USA召集的专家志愿者小组提出的,为临床医生实施新型HIV预防方法提供了指导方针。专家们对
干细胞研究突破:不经遗传修饰实现重编程
诱导性多潜能干细胞是被国际生命科学界誉为具有里程碑意义的创新之举,需要通过特定基因的表达将体细胞重编程逆转为干细胞。然而Stem Cell上3月16日刊登的一篇文章报道了来自美国Buffalo大学的研究小组证明成人的皮肤细胞可以转化为不带遗传修饰的神经嵴细胞(干细胞的一种类型),这些干细胞可以产
ips细胞新研究揭开遗传性耳聋成因
日本研究人员日前利用一种遗传性耳聋患者的诱导性多能干细胞(ips细胞)培养出内耳细胞,并与健康人的内耳细胞相比较,发现了这一疾病的发病机制。这一研究也有望用于寻找其他听力障碍的治疗方法。 甲状腺肿—耳聋综合征是一种少见的先天性甲状腺激素有机合成障碍性疾病,属常染色体隐性遗传,临床上以甲状腺肿大
最新研究发现:助人为乐或源自基因遗传
据《社会神经科学》杂志的一项最新研究,基因型的一种变化似乎影响着人们是否参与助人行为。 通常,我们看到的是人们在品德或者精神信的驱使下帮助他人,而且完全自愿进行有益他人或者社会的事情。但是在最近几年,越来越多的证据已经表明,做好事的趋向或许是由基因影响的。在《社会神经科学》杂志的一项最新研
细胞质基因受核基因的控制举例草履虫放毒型的遗传
草履虫是单细胞原生动物,已知有两个品系,一个叫做放毒型(能产生草履虫素,杀死其他品系的草履虫而对自身无害),另一个叫敏感型(不能产生毒素,而且易被草履虫素所杀)。放毒型草履虫为什么会产生草履虫素呢?是由于两个因素的相互作用而共同决定的:其一是在它的细胞质中,大约含有几百个卡巴粒(推测是一种含有噬菌体
细胞质基因受核基因的控制举例草履虫放毒型的遗传
草履虫是单细胞原生动物,已知有两个品系,一个叫做放毒型(能产生草履虫素,杀死其他品系的草履虫而对自身无害),另一个叫敏感型(不能产生毒素,而且易被草履虫素所杀)。放毒型草履虫为什么会产生草履虫素呢?是由于两个因素的相互作用而共同决定的:其一是在它的细胞质中,大约含有几百个卡巴粒(推测是一种含有噬菌体
基因“剪刀”可加速特定基因遗传
CRISPR可增加雌性实验鼠将特定基因传给后代的几率。图片来源:ISTOCK近日,研究人员首次使用被称为基因“剪刀”的基因组技术CRISPR加快哺乳动物特定基因的遗传。这种极具争议的基因驱动策略几年前在实验室饲养的昆虫中得到证明。因为它能在整个物种中迅速传播一种基因,从而激发了人们利用
遗传发育所等建立茎尖细胞特异基因表达图谱
基因差异表达是细胞分化和不同细胞类型形式特异功能的基础。细胞特征的转录图谱对于了解不同类型细胞如何生长发育、响应环境至关重要。但植物细胞由细胞壁固着,不易分离,很难获得细胞类型特异的转录数据。 中国科学院遗传与发育生物学研究所焦雨铃研究组在之前的工作中建立了器官边界区的细胞特异表达图谱 (Ti
遗传发育所等作物驯化基因平行选择研究取得进展
作物驯化是农业发展中最重要的事件之一。作物驯化过程中,一些重要农艺性状表现出趋同驯化的特征,这些特征综合在一起被称为“驯化综合征”。控制这些性状的基因是否在不同物种驯化中受到平行选择一直是进化研究中的重要科学问题。迄今为止,同一基因在不同科作物驯化中受到平行选择仍未见报道。种子休眠减弱是一个典型
Nature关注遗传学新动向:人类基因敲除研究
数十年来,生物学家们一直在小鼠或其他动物模型中,通过失活目的基因来进行功能研究。现在这种基因敲除(knockout)研究有了更理想的模型,那就是人类。 当然,这并不是说像处理小鼠那样,对人类进行遗传学改造。事实上,研究者们是通过分析成百上千的人类基因组,在其中寻找失活某个基因的天然突变。他们希
遗传发育所大豆多基因聚合育种研究取得重要进展
黄淮海流域是我国大豆的第二产区和夏大豆的最大产区,常年播种面积在3000多万亩,而平均单产不足130公斤/亩。除了单产低以外,该地区存在的另一主要问题是大豆病毒病危害严重,导致大豆产量下降和品质变劣。解决上述问题的有效途径是培育高产抗病大豆新品种在生产上推广应用。 中国科学院遗
利用Axiom基因分型方案开展人类遗传学研究
Affymetrix的Axiom® 基因分型方案是一个创新的基因分型技术平台,它通过灵活的芯片选择、可靠的分析和GeneTitan® 多通道仪器上无需动手的自动化芯片处理实现了优化的人类遗传学流程。 如今,科学家常常通过新一代测序来发现基因组中的新颖变异
遗传发育所在黍子的基因组研究中取得进展
多倍化在植物进化过程中反复发生,呈现出多倍体化-二倍体化的循环模式,所有被子植物至少经历了一次多倍化事件。多倍体形成之后,通常会迅速进入二倍体化的过程,最终演变成二倍体。多倍化后的基因组休克和二倍化可能导致亚基因组优势,即显性基因组保留更多的祖先基因并显示更高的同源基因表达。然而,二倍体化的分子