Cell解开世纪之谜:青霉素究竟如何给细菌“致命袭击”
青霉素,这个在1928年发现的神奇药物,在几乎一个世纪后,它的工作机制依然是一个迷。它是最古老、应用最广泛的抗生素之一,攻击的构建细菌细胞壁的关键酶。细胞壁是细菌表面的网状结构,保护细胞的形状和完整性;一旦突破了这堵“墙”,细菌就会死亡,而我们也能从感染中康复。 故事本该是一个美好的结局,如果近几十年青霉素和其它抗生素的耐药性没有出现的话。这种耐药性的出现,严重危害了人类的健康。尽管目前科学家们在继续寻找新的抗生素,但是他们依然没能充分理解这些“老将们”究竟是如何工作的。 现在,哈佛医学院的微生物学和免疫生物学副教授Thomas Bernhardt和他的同事为这个故事续写了新的篇章。相关研究 结果发表在12月4日的《细胞》(Cell)杂志上。他们揭示了青霉素如何给细菌致命的袭击,有望为阻止细菌耐药性提供新途径。 该研究发现这些药物所做的不仅仅是简单的阻碍细胞壁的装配。Thomas Bernhardt说:“我们所用的一些......阅读全文
细菌细胞壁的简介
根据细菌细胞壁的构造和化学组成不同,可将其分为G+细菌(即革兰氏阳性菌)与G-细菌(即革兰氏阴性菌)。G+细菌的细胞壁较厚(20~80nm),但化学组成比较单一,只含有90%的肽聚糖和10%的磷壁酸;G-细菌的细胞壁较薄(10~15nm),却有多层构造(肽聚糖和脂多糖层等),其化学成分中除含有肽
细菌细胞壁的简介
根据细菌细胞壁的构造和化学组成不同,可将其分为G+ 细菌(即 革兰氏阳性菌)与G-细菌(即 革兰氏阴性菌)。G+细菌的 细胞壁较厚(20~80nm),但化学组成比较单一,只含有90%的 肽聚糖和10%的磷壁酸;G-细菌的细胞壁较薄(10~15nm),却有多层构造(肽聚糖和 脂多糖层等),其化学成
细菌有细胞壁吗
细菌有细胞壁。细胞壁是细菌的基本结构之一。细菌的结构有细胞壁、细胞膜、细胞质、核质。细菌有细胞壁吗细菌有细胞壁。细胞壁是细菌的基本结构之一、基本结构是各种细菌都具有的结构,细菌的结构包括细胞壁、细胞膜、细胞质、核质。某些细菌特有的结构称为特殊结构,包括细菌的荚膜、鞭毛、菌毛、芽胞。细胞壁厚度因细菌不
细菌细胞壁的简介
根据细菌细胞壁的构造和化学组成不同,可将其分为G+ 细菌(即 革兰氏阳性菌)与G-细菌(即 革兰氏阴性菌)。G+细菌的 细胞壁较厚(20~80nm),但化学组成比较单一,只含有90%的 肽聚糖和10%的磷壁酸;G-细菌的细胞壁较薄(10~15nm),却有多层构造(肽聚糖和 脂多糖层等),其化学成
细菌的基本结构:细胞壁
为了使您更好的了解临床检验技师的相关内容,医学教育网特搜集相关资料供大家参考。 细菌的基本结构:细胞壁 细胞壁是包被于细菌细胞最外层具有坚韧性和弹性的复杂结构。 (1)细胞壁的主要成分:用革兰染色法可将所有细菌分为两大类,即革兰阳性(G+)菌和革兰阴性(G-)菌。两类细菌的细胞壁化学组成,
细菌细胞壁的染色实验
实验方法原理 根据细菌细胞在高渗溶液中或用乙醚蒸气处理后,会产生质壁分离这一现象,经染色后也可在普通光学显微镜下区分细胞壁和细胞质膜。实验材料 巨大芽孢杆菌枯草芽孢杆菌试剂、试剂盒 结晶紫水溶液单宁酸(鞣酸)水溶液磷钼酸水溶液甲基绿水溶液NaCl结晶紫水溶液Bouin氏固定液硫堇水溶液乙醚仪器、耗材
细菌细胞壁的染色实验
细菌细胞壁很薄,革兰氏阳性菌的细胞壁为20~30 nm,革兰氏阴性菌的细胞壁为10~13 nm。组成细菌细胞壁的主要化学成分是肽聚糖,它与染料结合的能力差,不易着色,在细菌的染色过程中,一般情况染料都是通过细胞壁的渗透、扩散等作用而进入细胞,细胞壁本身并未染色。实验方法原理根据细菌细胞在高渗溶液中或
细菌细胞壁的脂多糖
脂多糖是G-细菌细胞壁所特有的成分,位于G-细菌细胞壁外面的一层较厚(8~10nm)的类脂多糖类物质,由类脂A、核心多糖和O-特异侧链3部分组成。类脂A是由2个氨基葡萄糖组成的二糖,分别与磷酸和长链脂肪酸相连;核心多糖是由5~10种糖,主要是己糖或己糖胺组成;O-特异侧链(也称O-抗原)是由3~5个
细菌细胞壁的染色实验
实验目的 学习掌握细菌细胞壁的染色法。 实验原理 细菌细胞壁很薄,组成细菌细胞壁的主要化学成分是肽聚糖,它与染料结合的能力差,不易着色,因此,欲通过染色来观察细胞壁,必须设法使细胞壁能着色,而细胞质则不易着色,常用的方法有单宁酸法和磷钼酸法。单宁酸和磷钼酸都是起媒染作用,它们使细胞
什么是细菌的细胞壁?
细菌的细胞壁是细菌细胞表面的一层坚硬的保护结构,它能够保护细菌免受外界环境的影响,并维持细菌的形态和结构。 细菌的细胞壁主要由肽聚糖(peptidoglycan)组成,这是一种由糖类和氨基酸组成的高分子化合物。肽聚糖分子通过共价键连接在一起,形成了一个坚韧的网状结构,这个结构被称为“肽
细菌细胞壁的外膜的介绍
也称外壁,是G-细菌所特有的结构。它位于细胞壁的最外层,厚18~20nm。由脂多糖、磷脂双分子层与脂蛋白组成。因含有脂多糖,也常被称为脂多糖层。外膜的内层是脂蛋白,连接着磷脂双分子层与肽聚糖层;中间是磷脂双分子层,它与细胞膜的脂双层非常相似,只是其中插有跨膜的孔蛋白;外层是脂多糖。
细菌细胞壁的基本信息介绍
细菌细胞壁主要成分是肽聚糖(peptidoglycan),又称粘肽(mucopetide)。细胞壁的机械强度有赖于肽聚糖的存在。合成肽聚糖是原核生物特有的能力。肽聚糖是由n-乙酰葡萄糖胺和n-乙酰胞酸两种氨基糖经β-1.4糖苷键连接间隔排列形成的多糖支架。在n-乙酰胞壁酸分子上连接四肽侧链,肽链
关于细菌细胞壁缺陷型的介绍
细菌细胞壁缺陷型(细菌L型) 细菌细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制,这种细胞壁受损的细菌一般在普通环境中不能耐受菌体内的高渗透压而胀裂死亡。但在高渗环境下,它们仍可存活。 革兰阳性菌细胞壁缺失后, 原生质仅被一层细胞膜包住,称为原生质体(protoplast);革兰阴性
细菌按细胞壁的组成分类
细菌的结构十分简单,原核生物,没有成形的细胞核,没有膜结构的细胞器例如线粒体和叶绿体,但是有细胞壁,有的细菌还有鞭毛和荚膜,根据细胞壁的组成成分,细菌分为革兰氏阳性菌和革兰氏阴性菌。“革兰氏”来源于丹麦细菌学家革兰(Hans Christian Gram),他发明了革兰氏染色。 细菌有些细菌细胞壁外
真菌和细菌有无细胞壁和液泡
真菌和细菌一般没有细胞壁和液泡,但有一些比较低级就可能有
关于细菌细胞壁缺陷型的培养介绍
细菌细胞壁缺陷型— 细菌L型在体内或体外、人工诱导或自然情况下均可形成,诱发因素很多,如溶菌酶(lysozyme)、溶葡萄球菌素(lysostaphin)、青霉素、胆汁、抗体、补体等。其中溶菌酶和溶葡萄球菌素能裂解肽聚糖中N-乙酰葡糖胺和N-乙酰胞壁酸之间的β-1,4糖苷键,破坏聚糖骨架。青霉素
溶菌酶处理细菌细胞壁应该用多少浓度
需要自己实验,不同的菌种不一样。100-1mg/ml,都试一下,20-25度温育20min。
关于细菌细胞壁缺陷型的基本介绍
细菌细胞壁缺陷型(细菌L型) 细菌细胞壁的肽聚糖结构受到理化或生物因素的直接破坏或合成被抑制,这种细胞壁受损的细菌一般在普通环境中不能耐受菌体内的高渗透压而胀裂死亡。但在高渗环境下,它们仍可存活。 革兰阳性菌细胞壁缺失后, 原生质仅被一层细胞膜包住,称为原生质体(protoplast);革兰阴性
细菌细胞壁的成分脂多糖的相关介绍
脂多糖是G-细菌细胞壁所特有的成分,位于G-细菌细胞壁最外面的一层较厚(8~10nm)的类脂多糖类物质,由类脂A、核心多糖和O-特异侧链3部分组成。类脂A是由2个氨基葡萄糖组成的二糖,分别与磷酸和长链脂肪酸相连;核心多糖是由5~10种糖,主要是己糖或己糖胺组成;O-特异侧链(也称O-抗原)是由3
简述细菌细胞壁缺陷型的感染与致病机理
细菌细胞壁缺陷型的感染与致病机理— 某些L型仍有一定的致病力,通常引起慢性感染,如尿路感染、骨髓炎、心内膜炎等,并常在使用作用于细胞壁的抗菌药物(β-内酰胺类抗生素等)治疗过程中发生。临床上遇有症状明显而标本常规细菌培养阴性者,应考虑细菌L型感染的可能性,宜作L型的专门分离培养,并更换抗菌药物。
Cell:青霉素杀灭细菌的新型作用机制
1928年,科学家们发现了青霉素(盘尼西林),其作为一种最古老、使用最广泛的抗生素,可以通过攻击细菌细胞壁上的特殊酶类从而促进细菌死亡,使得人类免于感染。近日,刊登在国际著名杂志Cell上的一篇研究论文中,来自哈佛大学医学院的研究人员通过研究揭示了青霉素对细菌实施毁灭性攻击的一种新策略,或可帮助
氨苄西林如何通过干扰细菌细胞壁合成发挥抗菌作用?
氨苄西林通过干扰细菌细胞壁的合成来发挥抗菌作用。 氨苄西林是一种抗生素,它对某些细菌具有显著的抗菌效果。它的作用机制主要是抑制细菌细胞壁的合成。具体来说,氨苄西林能够与细菌细胞壁合成过程中的关键酶结合,阻止了细胞壁的正常构建。没有完整的细胞壁,细菌就无法维持其结构的稳定性,最终导致细菌的迅速破
Cell解开世纪之谜:青霉素究竟如何给细菌“致命袭击”
Cell解开世纪之谜:青霉素究竟如何给细菌“致命袭击” 青霉素,这个在1928年发现的神奇药物,在几乎一个世纪后,它的工作机制依然是一个迷。它是最古老、应用最广泛的抗生素之一,攻击的构建细菌细胞壁的关键酶。细胞壁是细菌表面的网状结构,保护细胞的形状和完整性;一旦突破了这堵“墙”
新研究揭开细菌能“吃”青霉素的秘密
新华社华盛顿5月7日电 青霉素等抗生素常被用于对付细菌,但现在一些细菌不仅对抗生素产生了耐药性,甚至还能以抗生素为食。一项最新研究揭开了细菌为何能“吃”青霉素的秘密,相关发现有助于解决抗生素污染问题。 美国圣路易斯华盛顿大学医学院等机构的研究人员近日在英国《自然·化学生物学》杂志上发表的论
新研究揭开细菌能“吃”青霉素的秘密
青霉素等抗生素常被用于对付细菌,但现在一些细菌不仅对抗生素产生了耐药性,甚至还能以抗生素为食。一项最新研究揭开了细菌为何能“吃”青霉素的秘密,相关发现有助于解决抗生素污染问题。 超级细菌.jpg 美国圣路易斯华盛顿大学医学院等机构的研究人员近日在英国《自然·化学生物学》杂志上发表的论
新研究揭开细菌能“吃”青霉素的秘密
青霉素等抗生素常被用于对付细菌,但现在一些细菌不仅对抗生素产生了耐药性,甚至还能以抗生素为食。一项最新研究揭开了细菌为何能“吃”青霉素的秘密,相关发现有助于解决抗生素污染问题。图片来源于网络 美国圣路易斯华盛顿大学医学院等机构的研究人员近日在英国《自然·化学生物学》杂志上发表的论文说,他们分析
新研究揭开细菌能“吃”青霉素的秘密
新华社华盛顿5月7日电 青霉素等抗生素常被用于对付细菌,但现在一些细菌不仅对抗生素产生了耐药性,甚至还能以抗生素为食。一项最新研究揭开了细菌为何能“吃”青霉素的秘密,相关发现有助于解决抗生素污染问题。 美国圣路易斯华盛顿大学医学院等机构的研究人员近日在英国《自然·化学生物学》杂志上发表的论
Cell解开世纪之谜:青霉素究竟如何给细菌“致命袭击”
青霉素,这个在1928年发现的神奇药物,在几乎一个世纪后,它的工作机制依然是一个迷。它是最古老、应用最广泛的抗生素之一,攻击的构建细菌细胞壁的关键酶。细胞壁是细菌表面的网状结构,保护细胞的形状和完整性;一旦突破了这堵“墙”,细菌就会死亡,而我们也能从感染中康复。 故事本该是一个美好的结局,如果
Nature颠覆生物学教条:至关重要的新蛋白质家族
哈佛医学院的科学家们发现了几乎所有的细菌利用来构建和维持细胞壁的一个新的蛋白质家族。 研究的领导者David Rudner和Thomas Bernhardt说,发现第二组细胞壁合成者可帮助为开发出急需的疗法以靶向细胞壁作为一种途径来杀死有害细菌铺平道路。 研究结果发布在8与15日的《自然》
细菌细胞壁糖的薄层层析(thin-layer-chromatography,TLC)(2)
四、操作步骤(一)菌体培养及样品的准备1.菌体培养:以枯草芽孢杆菌为例。培养基成分为:1%蛋白胨,0.5%氯化纳,1%牛肉汁,调pH 至7.2。将培养基装入500mL 三角瓶内,每瓶100mL,灭菌,5.52×10Pa,30分钟。灭菌后的培养基冷至约30℃,用接种环取菌株一环,接种于培养基内。摇床培