科学家发现脑细胞中调节线粒体运动的蛋白
美国罗彻斯特大学神经科学研究所日前表示,该所研究小组发现了一种新蛋白,并将它命名为“缺氧引导的线粒体运动调节器”(HUMMR)。该蛋白的发现与对其功能的鉴定,为人们研究线粒体的运动以及了解脑细胞如何应对缺氧(如脑中风而造成的伤害),提供了非常重要的基础。相关研究报告发布在近期出版的《细胞生物学》杂志上。 线粒体是细胞中非常重要的细胞器,它们给细胞提供能量,支持细胞活动,并且可能还有助于细胞战胜危害和损伤。线粒体在细胞中必须合理地分布以便行使它们的功能。但是有一些特殊的细胞,如大脑里的神经元细胞,具有非常特殊的形状——有很多长而突出的树突和轴突,它们需要更加完善的调节机制来保证线粒体的正常分布,以支持正常的细胞功能。 经过4年的研究,罗切斯特大学神经科学研究所的李艳博士和同事发现了HUMMR蛋白,它能调节神经元中线粒体的运动和分布。研究人员表示,该蛋白的主要功能是保证细胞内线粒体......阅读全文
线粒体解码神经元活动研究获进展
中国科学院自动化研究所研究员韩华团队通过其自主研发的电镜三维成像和快速重建技术,首次展现小鼠运动皮层锥体神经元胞体和树突中数百个线粒体的三维形态,发现神经元树突中线粒体依靠较细的“线粒体纳米管道”连接在一起(管道直径30-50纳米)的现象,有力支撑线粒体解码神经元活动的研究。 相关成果“Bra
如何提取线粒体膜蛋白
胞内蛋白只需核糖体和线粒体(供能)膜蛋白不是胞内蛋白,在细胞质基质中加工,它的合成与加工和分泌蛋白一样,都需要经过内质网和高尔基体。
细胞能量工厂——线粒体-如何解码神经元活动模态
中国科学院自动化研究所研究员韩华团队通过其自主研发的电镜三维成像和快速重建技术,首次展现小鼠运动皮层锥体神经元胞体和树突中数百个线粒体的三维形态,发现神经元树突中线粒体依靠较细的“线粒体纳米管道”连接在一起(管道直径30-50纳米)的现象,有力支撑线粒体解码神经元活动的研究。 相关成果“Bra
线粒体融合蛋白2决定细胞生死
有机体的每个细胞中都有一种传感器,能检测自身“内部”环境是否健康。这种“报警器”存在于内质网(ER)中,能感知细胞所受的压力,引发修复反应或让细胞走向死亡。据物理学家组织网近日报道,西班牙巴塞罗那生物医学研究所(IRB)科学家最近发现,线粒体融合蛋白2(Mfn2)对于正确检测细胞压力水平起着关键
线粒体蛋白质转运的概述
线粒体的蛋白合成能力有限,大量线粒体蛋白在细胞质中合成,定向转运到线粒体。这些蛋白质在在运输以前,以未折叠的前体形式存在,与之结合的分子伴侣(属hsp70家族)保持前体蛋白质处于非折叠状态。通常前体蛋白N端有一段信号序列称为导肽、前导肽或转运肽(leadersequence、presequenc
TDP43可导致线粒体损伤并激活线粒体去折叠蛋白反应
TDP-43是一个多功能的DNA和RNA结合蛋白,由TARDBP基因编码,在细胞内的RNA转录、选择性剪接及mRNA稳定性调节等过程中发挥功能。在ALS (amyotrophic lateral sclerosis)和FTLD (frontotemporal lobar degeneration
神经元线粒体应激的记忆可跨代遗传的现象与机制
遗传与环境共同作用,决定个体的发育、生殖、衰老和行为等。在受到环境压力胁迫时,生物体会产生适应性的应激反应。生物学家关注的科学问题是生物体产生的这些应激反应是否可以直接传递给后代,在后代尚未直接经历上一辈的环境胁迫时,便获得某些性状,使他们能够更好地应对预期的环境变化和压力胁迫。 8月2日,中
神经元线粒体应激的记忆可以跨代遗传的现象和机制
遗传与环境共同作用,决定个体的发育、生殖、衰老和行为等,在受到环境压力胁迫时,生物体会产生适应性的应激反应。长久以来,生物学家一直非常关注的科学问题是,生物体所产生的这些应激反应是否可以直接传递给后代,在后代还未直接经历上一辈的环境胁迫时,就获得某些性状,使他们能够更好的应对预期的环境变化和压力
动物所等发现舞蹈病神经元线粒体DNA氧化损伤的机制
亨廷顿氏舞蹈病是一种常染色体显性遗传的神经退行性疾病,主要表现为运动障碍、认知和精神紊乱,一般在发病后10-15年内死亡。该疾病的病理特征是大脑纹状体神经元的渐进性丢失,但亨廷顿基因突变导致纹状体神经元选择性死亡的机制还不清楚,目前也没有任何治疗手段。前人一系列研究发现,与大脑其他区域
工程蛋白让人类“听到”神经元交流
美国艾伦研究所和霍华德·休斯医学研究所科学家通过蛋白质工程技术,改造出一种特殊蛋白,名为iGluSnFR4,这是一种分子级“谷氨酸指示器”,可用于实时观察大脑中神经元的交流过程。这一成果有助破译大脑隐藏的“语言”,加深对其复杂神经回路运作方式的理解。相关成果发表于新一期《自然·方法》杂志。 在
美发现线粒体钙通道关键驱动蛋白
线粒体就像生物体内的电池,为几乎所有细胞供应能量,而支持这一供能过程的分子机制一直是个谜。据美国物理学家组织网6月20日(北京时间)报道,哈佛大学医学院和马萨诸塞综合医院研究人员通过查阅人类基因组项目数据库资料并结合实验分析,终于发现了驱动线粒体钙通道机制的关键蛋白。该发现发表在6月19日出版的
改善线粒体相关疾病要靠一关键蛋白
近日,来自意大利的科学家在国际学术期刊cell metabolism在线发表了一项最新研究进展,在该项研究中他们发现一个治疗线粒体紊乱的潜在作用靶蛋白,对于线粒体治疗药物开发具有重要意义。 身体内几乎每一个细胞内都含有线粒体,特别是在大脑、肌肉和心脏等重要器官,线粒体发挥着非常重要的功能。而线
揭秘脑神经元线粒体与胞质之间钙瞬变的概率性耦合
Nature Communications在线发表了北京大学分子医学研究所程和平团队和纽约大学医学院甘文标团队的合作论文“Brain Activity Regulates Loose Coupling between Mitochondrial and Cytosolic Ca2+ Transi
科学家发现“线粒体炫”调控神经元突触水平的长时程记忆
为什么有的记忆能铭刻一生而有的只能存在几分钟?短期的记忆如何转变为长期的记忆?近日,中国科学技术大学生命科学学院毕国强课题组与北京大学分子医学研究所程和平课题组合作,发现神经元树突“线粒体炫信号”在神经突触传递短时程记忆向长时程记忆的转化中可能发挥着关键作用,相关成果于6月26日在《自然-通讯》
脑神经元线粒体靶向胶束在减轻氧化应激延缓阿尔兹海...
脑神经元线粒体靶向胶束在减轻氧化应激延缓阿尔兹海默症的应用【VISQUE应用案例】2.脑神经元线粒体靶向胶束用于减轻氧化应激延缓阿尔兹海默症编辑:Biotimestech-Leo 线粒体功能障碍是阿尔兹海默病(AD)的早期病变,可用来指示AD的发生和发展,因此可以作为AD早期病变的有
线粒体基质的线粒体结构
线粒体基质 线粒体基质是线粒体中由线粒体内膜包裹的内部空间,其中含有参与三羧酸循环、脂肪酸氧化、氨基酸降解等生化反应的酶等众多蛋白质,所以较细胞质基质黏稠。苹果酸脱氢酶是线粒体基质的标志酶。线粒体基质中一般还含有线粒体自身的DNA(即线粒体DNA)、RNA和核糖体(即线粒体核糖体)。 线粒体
人线粒体促凋亡蛋白(SMAC)ELISA试剂盒
人线粒体促凋亡蛋白(SMAC)ELISA试剂盒 (用于血清、血浆、细胞培养上清液和其它生物体液内) 原理本实验采用双抗体夹心 ABC-ELISA法。用抗人 SMAC/Diablo 单抗包被于酶标板上,标准品和样品中的 SMAC与单抗结合,加入生物素化的抗人SMAC,形成免疫复合物连接在板上,辣根过氧
PNAS:线粒体蛋白转运的“两面性”
线粒体是细胞的能量工厂。通过氧化(底物水平的磷酸化)分解糖类的代谢物,合成着细胞所需的绝大多数能量货币——ATP。因此,线粒体的正常工作,就像炼油厂或者发电厂对现代社会那样重要。线粒体的正常工作需要大量的蛋白质提供支持。一般认为,在线粒体中,蛋白质含量是通过细胞质新合成蛋白质输入和老旧蛋白质的降
Gasdermin蛋白增强线粒体凋亡信号,抑制癌细胞生长
半胱氨酸天冬氨酸蛋白酶3(caspase-3)可以剪切Gasdermin E (GSDME/DFNA5)释放出GSDME-N结构域,从而通过在细胞膜上形成孔洞介导细胞焦亡。图片来源:《Nature Communications》 近日来自托马斯杰斐逊大学(Thomas Jefferson Un
细胞凋亡的检测—早期(细胞线粒体膜蛋白法)
实验步骤展开
广州健康院发现线粒体基因编码第14个蛋白质的“线粒体约定”新模式
5月3日,中国科学院广州生物医药与健康研究院刘兴国课题组在《细胞-代谢》(Cell Metabolism)上发表了题为A novel protein CYTB-187AA encoded by the mitochondrial gene CYTB modulates mammalian early
科学家发现协助线粒体外膜蛋白嵌入的关键蛋白
线粒体外膜蛋白不仅可以调控线粒体与其他细胞器的分子信号传递,还能够促发受损线粒体通过自噬方式降解从而维持细胞线粒体稳态。线粒体外膜蛋白是如何嵌入线粒体膜的机制仍有待揭示。美国麻省理工学院和加州理工学院的研究团队报道了一种协助蛋白嵌入线粒体外膜的蛋白质,相关成果在《Science》发表,论文的标题
PNAS:线粒体在神经退行性疾病中的作用
近日,一项新研究揭示了线粒体在衰弱、致命的运动神经元疾病中的作用,并开发出一种新的小鼠模型来研究这种疾病。 研究人员Janet Shaw教授发现,当健康的,正常的线粒体沿轴突移动过程被阻断时,小鼠发展患上神经退行性疾病症状。相关研究发表在PNAS杂志上,Shaw和她的研究同事们说,他们的研究结
新的PPR蛋白dek2影响线粒体内含子1的剪切和线粒体功能...
新的PPR蛋白dek2影响线粒体内含子1的剪切和线粒体功能以及玉米籽粒的发育2017年1月1日遗传学期刊Genetics(影响因子4.6)在线发表了上海大学生命科学学院祁巍巍老师的有关玉米突变体基因克隆与功能分析新文章,题为:Mitochondrial function and maize ke
运动神经元表面蛋白具有“双向通讯”功能
美国约翰·霍普金斯大学科学家通过研究果蝇的神经系统,揭示了几种蛋白质信号的活动,这些蛋白质信号能让运动神经轴突知道该在何时、何地分支,伸向正确的肌肉目标并与之连接。相关论文发表在近期《神经元》杂志上。 果蝇要控制自身运动,必须有一套运动神经元将运动纤维和神经索连在一起。在胚胎发育期,神经细
一免疫蛋白可调控大脑神经元连接
据美国物理学家组织网2月27日报道,加州大学戴维斯分校科学家的一项最新研究表明,一种免疫系统蛋白分子能调控大脑神经元之间突触连接的数量。这也显示出,在人们的免疫能力、感染疾病和精神状态,如精神分裂、孤独症之间可能存在着某种关联。相关研究发表在2月27日出版的《自然·神经科学》上。
线粒体原位膜蛋白的高分辨结构解析首次实现
3日,记者从南京中医药大学获悉,该校医学院朱家鹏教授和耶鲁大学张凯教授联合研究团队突破了蛋白质纯化的传统概念,直接以线粒体成像,首次实现了线粒体原位膜蛋白的高分辨结构解析,得到呼吸链超级复合体的最真实最清晰的三维结构,为氧化磷酸化这一最基本的生命过程的研究提供了坚实的理论基础。相关科研成果发表在国际
线粒体融合蛋白2决定细胞生死-将作为治疗标靶
有机体的每个细胞中都有一种传感器,能检测自身“内部”环境是否健康。这种“报警器”存在于内质网(ER)中,能感知细胞所受的压力,引发修复反应或让细胞走向死亡。据物理学家组织网近日报道,西班牙巴塞罗那生物医学研究所(IRB)科学家最近发现,线粒体融合蛋白2(Mfn2)对于正确检测细胞压力水平起着关键
线粒体呼吸链膜蛋白复合物Ⅰ的结构揭晓
德国科学家成功揭示细胞线粒体呼吸链膜蛋白复合物Ⅰ的结构,并发现了分子复合物中的全新能量转换机制,细胞可通过该机制使用储存在营养中的能量。相关研究成果发表在7月1日的《科学》杂志网络版上。 有氧呼吸是动植物进行呼吸作用的主要形式,细胞在氧的参与下,通过酶的催化作用将糖类等有机
线粒体原位膜蛋白的高分辨结构解析首次实现
3日,记者从南京中医药大学获悉,该校医学院朱家鹏教授和耶鲁大学张凯教授联合研究团队突破了蛋白质纯化的传统概念,直接以线粒体成像,首次实现了线粒体原位膜蛋白的高分辨结构解析,得到呼吸链超级复合体的最真实最清晰的三维结构,为氧化磷酸化这一最基本的生命过程的研究提供了坚实的理论基础。相关科研成果发表在