发布时间:2015-09-18 10:57 原文链接: 我国科学家抓细胞炎性坏死的“杀手”

  “这是一项具有极高原创性的研究工作,揭开了在炎症领域潜伏多年的‘黑匣子’,是炎症领域研究的重要里程碑,具有‘非凡的重要性’!”

  获得国际顶级期刊《自然》杂志四位审稿人如此评价的,是伦敦当地时间9月16日下午6时(北京时间17日凌晨1时)在该杂志在线发表的一篇长文,其内容是解析细胞炎性坏死关键分子机制,通讯作者为北京生命研究所资深研究员邵峰博士。

  “这项研究成果可能是我回国十年多来最为重要的工作。”邵峰博士告诉记者,该发现不仅破解了一个极为重要的科学难题,为治疗败血症、痛风和家族性地中海热等免疫疾病提供了可能和理论指导,同时也开辟了一个全新的细胞炎性坏死研究领域。

  细胞炎性坏死是一把双刃剑

  既可激活人体免疫系统消灭病原体,又能导致痛风、败血症等多种免疫性疾病

  据邵峰介绍,在成年人的身体里,每天大约有500-700亿个细胞死亡。这些细胞大部分是通过细胞主动“自杀”实现的。这种细胞“自杀”有助于人类去除机体内已完成正常生理功能、不再需要的细胞,控制癌细胞繁殖或其它已发生功能紊乱的细胞。同时,细胞“自杀”也是清除各种微生物病原体感染的重要手段。

  “细胞‘自杀’有几种,其中非常重要的一类叫细胞炎性坏死(学名为细胞‘焦亡’)。”邵峰说,和其它类细胞“自杀”不同的是,这种细胞死亡可以激活强烈的炎症反应,外在症状包括发烧、红肿、疼痛等。

  “细胞炎性坏死和发炎在人类身体对抗感染的过程中发挥着非常关键的作用。想象一下,你的细胞是一个‘小房子’,而病原体躲进了‘小房子’,在里面复制、繁殖,最终可能导致细胞和机体功能紊乱、感染性疾病的发生。在这种情况下,你最好的办法就是把‘小房子’炸开,让病原体暴露出来,同时释放信号招募、激活身体免疫系统的其它吞噬细胞,来消灭病原体。”邵峰说,细胞炎性坏死正是“炸开”被病原体入侵的细胞“小房子”并激活免疫系统的有效方法。

  “但是,细胞炎性坏死也是一把双刃剑。”邵峰解释说,当人体中由于遗传突变发生不正常的细胞炎性坏死时,会导致诸如痛风和家族型地中海热等多种自身性炎症或自身免疫性疾病。同时,过度细胞炎性坏死也是细菌感染导致内毒素休克和败血症的最本质原因。“因此,了解细胞炎性坏死的分子机制,对于这些疾病的治疗非常重要。”

  令邵峰感到兴奋的是,去年有研究报道表明,HIV(人类免疫缺陷病毒)感染和艾滋病的发生也和这种细胞炎性坏死密切相关。“如果这一研究被证明是正确的,那么就可能为避免HIV感染和治疗艾滋病提供新的思路。”邵峰说。

  揭开20年未解之谜

  通过对2.2万个基因的系统筛查,终于抓获细胞炎性坏死的“杀手”——蛋白质GSDMD

  “只有在分子水平上了解细胞炎性坏死的发生过程,才能研发针对性的药物开发。”邵峰介绍说,细胞炎性坏死早在20世纪90年代就被发现,目前全球有多个顶尖实验室的科学家在努力破译细胞炎性坏死的密码,是国际生命科学领域的热门课题。令人遗憾的是,至今科学界对其发生的分子机制却知之甚少。

  细胞炎性坏死是人体天然免疫系统的重要组成部分,天然免疫系统犹如整个免疫系统的触觉、听觉和视觉,用于感知进入人体的各种病原体。“在机体细胞的内部,也存在识别病原感染的触觉、听觉和视觉系统,这些系统在感知病原体侵入后,可以激活一类被称为‘半胱天冬酶’的蛋白酶(caspase)。”邵峰说,这些蛋白酶类似于蛋白质“剪刀”,其主要功能是剪切其它蛋白质。此前的研究表明,细胞炎性坏死主要由两把这样的“剪刀”完成,其中一把“剪刀”——Caspase-1早在上世纪90年代初就被科学家们发现,它接收来自天然免疫系统在感知各种不同病原体后发出的多种指令;而另一把“剪刀”——caspase-4则通过直接识别细菌内毒素分子专门负责感知病原细菌的感染,是控制内毒素休克和细菌败血症等严重疾病发生的关键因子。“20多年来科学家完全不清楚:这些‘剪刀’究竟是通过剪切什么样的蛋白质,来启动炎性坏死发生的?”

  6年前,邵峰实验室开始聚焦这一国际热门领域。他带领其博士研究生石建金和博士后赵越等研究人员,在北生所转基因中心和高通量测序中心多位同仁的帮助下,通过运用最新的基因组编辑技术,对人类基因组中的近2.2万个基因进行了彻底的系统筛选,最终发现了一个在细胞炎性坏死中发挥关键作用的蛋白质GSDMD。研究表明,在细胞中去除该蛋白质,细胞便不再能发生炎性坏死。

  “更重要的是,我们还发现这个蛋白就是引发细胞炎性坏死的直接‘杀手’。”邵峰说,在正常情况下,GSDMD蛋白质会被自身携带的“枷锁”锁住,处于没有活性的休眠状态;当半胱天冬酶被激活后,就会在GSDMD蛋白质的中间区域进行特异性的剪切,去除束缚它的“枷锁”,被解放的“杀手”自己即可直接执行细胞炎性坏死——让细胞膜发生破裂而死亡。

  开辟炎性坏死研究的全新领域

  一方面着手药物开发,一方面继续捕捉其余“杀手”

  “对于疾病治疗来说,GSDMD蛋白质这个‘杀手’却是全新的药物靶点。”邵峰介绍说,他们已经开始着手研发药物。“第一步是研制针对GSDMD蛋白质的抑制剂,然后再细化分类,针对不同疾病研发不同的药物。这个过程会比较长,最快也得5年吧。”

  让邵峰他们更感到激动的,是他们惊喜地发现:“杀手”不止一个。“我们的研究表明,GSDMD属于一个被称为gasdermin的功能完全未知的蛋白家族,该家族还包括GSDMA、GSDMB、GSDMC、DFNA5、DFNB59等成员。这些类似GSDMD的‘杀手’在接到人体天然免疫系统的其它命令后,同样能导致细胞炎性坏死。这些‘杀手’分布在人体的不同部位,都是单线联系,它们的‘上线’是谁,发出什么样的指令,针对的病原体是什么,目前都不清楚。”

  “这表明我们开启了炎性坏死研究的全新方向和全新领域,还有很多未解之谜等待揭开。所以,我们在研发药物的同时,也在捕捉其他‘杀手’——更多惊喜还在后面。”邵峰说。

  “这个领域的竞争相当激烈,我们必须快马加鞭。”邵峰透露说,“前几天《自然》杂志的编辑告诉我,一篇类似的文章,半个月后也会在该杂志发表。”

  鉴于细胞炎性坏死在自身免疫疾病、败血症、艾滋病等疾病中的重要作用,针对GSDMD和相关蛋白作为靶点设计药物将可能有助于人们治疗这些疾病。

相关文章

岛津原子力显微镜在细胞及分子生物学的研究进展

 原子力显微镜作为一种三维形貌观察工具,不仅具备超高分辨率,而且支持在液体环境下工作,是一种理想的生命科学/医学观测设备。除了形貌观察外,原子力显微镜还可以对多种表面属性进行定量观测。例如,......

2024年中国细胞培养基行业市场现状及发展趋势分析

行业主要上市公司:奥浦迈(688293),近岸蛋白(688137),中牧实业(600195),双鹭实业(002038),通化东宝(600867),冠昊生物(300238),三生国健(688336),洁......

西北大学团队“topdown”质谱法|单日分析上千个单细胞

西北大学研究团队开发出一种基于电荷检测质谱技术的自顶向下(top-down)的单细胞蛋白质组学方法。该方法在本月发表于BioRxiv预印本上,科学家们用此方法可以每天检测1000多个单细胞中的完整蛋白......

世界首例克隆藏羊在青海诞生

近日,由西北农林科技大学团队联合青海省西宁市动物疫病预防控制中心培育的“克隆藏羊”在青海顺利出生。这是国内首次采用体细胞克隆技术对现存藏羊群体中的优良个体进行种质复原保存,并用于良种藏羊高效繁育。初生......

阻碍胶质母细胞瘤化疗反应的新障碍被发现

胶质母细胞瘤(GBM)是原发性脑和中枢神经系统(CNS)肿瘤中最具侵袭性和致命性的一种。手术切除肿瘤后,胶质母细胞瘤患者通常接受放射治疗和化疗药物替莫唑胺(TMZ)治疗。尽管患者最初对该药物反应良好,......

稀有脂肪分子帮助细胞死亡

哥伦比亚大学的科学家报告说,他们发现一种罕见的脂质是铁死亡(一种细胞死亡形式)的关键驱动因素。这些发现提供了关于细胞在铁死亡过程中如何死亡的新细节,并可以提高人们对如何在神经退行性疾病等有害发生铁死亡......

纳米材料与细胞相互作用研究获新进展

近日,山东大学晶体材料国家重点实验室教授仇吉川、刘宏与基础医学院教授郝爱军发展了一种用于改善纳米颗粒与细胞的相互作用的普适性策略。研究成果发表于《德国应用化学》。纳米材料在药物递送、组织工程、生物成像......

《细胞》编辑团队发布创刊50周年祝词

1月11日,《细胞》(Cell)编辑团队向《中国科学报》发来创刊50周年祝词,回顾创刊历程,并展望了未来的发展。以下为相关内容:1984年,《细胞》创刊。自创刊伊始,《细胞》的目标便是发表“令人兴奋的......

生物反应器国重实验室新进展!纳米机械天然杂合细胞

近日,华东理工大学生物反应器工程国家重点实验室叶邦策教授课题组在DNA传感装置的设计及生物纳米杂合系统研究中取得了重要进展。该研究构建了纳米机械-天然杂合细胞,赋予了天然细胞非传统信号分子的感知、分析......

2023获批数创新高,明年这9款疗法可能获批|细胞和基因疗法年度盘点

美国FDA曾在几年前预计,到2025年,每年将批准10-20款细胞和基因疗法。随着这一领域在全球范围内的迅猛发展,今年批准的细胞和基因疗法再创新高,不仅朝着这一目标大步迈进,也为全球病患带来了更多创新......