Antpedia LOGO WIKI资讯

JBC:科学家阐明大脑产生记忆力的分子机制

当我们制造记忆时,大脑中的神经元就会伸出“细丝”同附近的神经元形成电化学连接;近日一篇发表于国际杂志Journal of Biological Chemistry上的研究论文中,来自范德堡大学的研究人员通过研究在分子和细胞水平上揭示了记忆形成过程中神经元间的连接。 研究者表达,我们通过进行一系列实验发现,来自神经元的纤丝会制造树突棘(dendritic spines),而负责调节细胞迁移及吸附的一种名为Asef2的特殊信号蛋白在树突棘的形成过程中扮演着重要角色,Asef2蛋白和自闭症、酒精依赖及抑郁症的发病直接相关。Webb教授说道,树突棘的改变和许多神经变性及发育性障碍直接相关,比如自闭症、阿尔兹海默氏症以及唐氏症;然而树突棘的形成和维护是一种非常复杂的过程,需要我们去深入地理解。 机体中的神经元可以在大脑中产生两种类型的迂回长纤维,即树突和轴突,轴突可以可以通过机体的一个神经元向另一个神经元的树突传递电化学信号,而树......阅读全文

上海生科院揭示介导树突棘修剪的分子机制

  8月7日,《细胞》期刊在线发表了中国科学院上海生命科学研究院神经科学研究所于翔研究组题为《树突棘的协同修剪与成熟由树突棘间对Cadherin/catenin复合物的竞争所介导》的研究论文。该研究发现相邻树突棘之间对cadherin/catenin复合物的竞争决定了它们在树突棘修剪过程中的不同命运

青年女科学家于翔Cell发表新文章

  来自中科院上海生命科学研究院的研究人员在新研究中证实,树突棘间竞争Cadherin/Catenin复合物介导了协调的树突棘修剪和成熟。这一研究发现发布在8月6日的《细胞》(Cell)杂志上。  中科院上海生命科学研究院神经科学研究所的于翔(Xiang Yu)研究员是这篇论文的通讯作者。于翔博士主

Nature:光,擦除小鼠记忆

  发表于国际著名杂志Nature上的一项研究报告中,来自美国和日本的多位科学家通过联合研究开发了一种新型设备,该设备可以改变小鼠大脑中的神经树突棘,而神经树突棘可以被促进记忆形成的事件在天然状态下首次修饰,因此该研究表明,通过改变大脑中的神经树突棘或许就可以促进大脑中已经形成的记忆被遗忘。  作为

Nature新研究解析百年谜题

  大脑是了解最少的人体器官,它包含一个庞大的电兴奋神经元网络,所有神经元通过它们树突上的受体来彼此沟通信息。这些细胞以某种方式协同作用实现人类学习和记忆等壮举。然而其机制是怎样的呢?   研究人员知道树突棘(dendritic spine)发挥了重要的作用。这些微小的膜性结构从树突分支中伸出,遍

遗传发育所等发现树突棘形态发生及稳定的分子调控机制

  神经元群通过细胞之间大量的突触(synapse)连接进行信息交换和整合,形成神经网络,实现中枢神经系统感觉、思维、意识活动等高级功能,诸多神经精神性疾病的发生均伴随着突触结构或功能的异常。树突棘是神经元树突质膜上形成的微小膜状突起,是兴奋性突触信号的主要接收位点。树突棘的结构和功能可塑性是学习和

老年痴呆症潜在新靶点,副作用更少 前景更光明

  阿拉巴马大学伯明翰分校(UAB)的科学家们发现了大脑中的一种酶,这种酶可能是治疗阿尔茨海默病和其他痴呆症的潜在靶点。  研究人员认为,这种被称为 LIMK1的丝氨酸/苏氨酸激酶,可能在树突棘的降解中起到重要作用。树突棘是连接大脑神经元的物质。6月25日发表在《科学信号》杂志上的一篇论文中,研究小

氯胺酮有助于维持与抑郁症有关行为

  在一项新的研究中,来自日本东京大学、美国斯坦福大学和威尔康乃尔医学院的研究人员在小鼠中鉴定出氯胺酮(ketamine)诱导的大脑相关变化有助于维持与抑郁症有关的行为的缓解,这一发现可能有助于人们开发出促进人类抑郁症持续缓解的干预措施。相关研究结果发表在2019年4月12日的Science期刊上,

感冒时不适合学习,这也需要研究?还发在Nature子刊上?

  你是否曾注意到,每当身体遭遇系统性的病毒感染(如流感)或炎症时,大脑的学习和记忆功能会出现减退?最近,纽约大学朗格尼医学中心(NYU Langone Medical Center)的研究人员发现了可能导致上述现象的一种天然免疫机制,并于《自然》子刊《Nature Medicine》上发表。  小

科学家揭示自闭症致病的分子机理

  2月7日,国际精神疾病研究期刊《分子精神病学》在线发表了题为《孤独症相关的Dyrk1a无义突变影响神经元树突、树突棘生长及皮层发育》的研究论文。该研究由哈佛大学波士顿儿童医院、复旦大学教授吴柏林研究组与中国科学院上海生命科学研究院神经科学研究所、脑科学与智能技术卓越创新中心仇子龙研究组合作完成。

吴柏林、仇子龙合作研究发现:自闭症致病的分子机理

  自闭症是一种复杂的遗传性症候群和神经精神发育类疾病,多发于儿童早期,临床诊断由三个典型特征所判定,分别是社交障碍、重复刻板行为以及语言沟通障碍。目前没有有效的药物治疗方法。且近年来自闭症的患病率逐渐升高,引起社会各界广泛关注。关于自闭症的基础与临床研究以及相关动物模型的研究已成为当前医学与神经科

Cell子刊:解析阿尔茨海默症中的毒性通路

  Scripps研究所(TSRI)的科学家们,揭示了阿尔茨海默症中的一个主要毒性机制,文章于四月十日发表在Neuron杂志上。这项研究将帮助人们更好的理解阿尔茨海默症进程,并有助于开发新型药物进行治疗。  研究人员发现,阿尔茨海默症中的大脑损伤与AMPK酶的过活跃有关。他们在阿尔茨海默症小鼠模型中

超分辨率显微镜实现自由运动神经环路高分辨成像

  提到在体小动物神经成像,人们自然会联想到钙离子荧光探针局部注射或遗传钙指示剂(如Gcamp家族)结合双/三光子显微镜的经典在体成像组合。  随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium ind

神奇的大脑记忆是如何形成的?

  长期以来,很多科学家对大脑的研究非常痴迷,有些研究试图去解析引发多种大脑相关神经变性疾病的发病机理,比如阿尔兹海默氏症、帕金森疾病、精神分裂症等等,而有些研究人员则从更深层次对大脑结构和功能区域进行了探秘研究,从而来解读我们大脑记忆的形成机制。  很多人都有着快乐的童年记忆,当然也有着那些痛苦不

揭示阿兹海默病的毒性机制

  阿兹海默病(一般俗称老年痴呆症,但医界不建议使用此名称)是一种致命的神经退行性疾病。  近日,美国斯克利普斯研究所(The Scripps Research Institute)的研究人员揭示了阿兹海默病中的一个主要毒性机制。这项研究将帮助人们更好的理解阿兹海默病进程,并有助于开发新型药物进行治

中科院JBC文章发表神经学研究新成果

  来自中科院上海生命科学研究院、中国科学院大学的研究人员在神经生物学研究中获得新发现,证实神经活动调控Somatostatin表达,通过突触后生长抑素受体4(Somatostatin Receptor 4)减少了树突棘密度,降低了兴奋性突触传递。相关论文发表在国际期刊《生物化学杂志》(JBC)

3月1日《自然》杂志精选

       封面故事: 关于“最老化石森林”的最新研究成果  Goldring的“最老化石森林”(以作为上个世纪20年代纽约州博物馆一次创新展出的主题而知名)是在为纽约州Schoharie县的Gilboa堤坝和水

解析:氯胺酮为何是一种抗抑郁药?恢复树突棘形成

  通过深深潜入“抑郁”小鼠的神经回路之中,研究人员揭示了氯胺酮是如何在细胞中实现其快速抗抑郁作用的。该研究显示,氯胺酮恢复了前额皮层中的树突棘形成;它还揭示了健康的树突棘在维持长期的抗抑郁效果中所起的关键作用。Anna Beyeler在相关的《视角》文章中写道:“...这项研究为研发治疗对药物产生

科学家有望揭开大脑的奥秘!

  近日,一项刊登在国际杂志Nature Communications上题为“A spike-timing-dependent plasticity rule for dendritic spines”的研究报告中,来自蒙特利尔大学等机构的科学家们通过研究揭开了隐藏在机体记忆和学习能力背后的分子机制

Nature子刊揭示阿尔茨海默氏症病因新机制

  来自哥伦比亚大学医学中心(CUMC)的研究人员证实,一个称作为caspase-2的蛋白是导致阿尔茨海默氏症认知能力下降的一条信号通路的关键调控因子。这项研究是在一个阿尔茨海默氏症小鼠模型中完成,研究结果表明,抑制这一蛋白有可能阻止与这一疾病相关的神经元损害,及随后的认知衰退。相关论文发表在《自然

Science:睡眠如何强化突触并有益记忆?

  据在小鼠中的一项研究报告,睡眠可巩固记忆,而它是通过促进脑中新的突触的生长来做得这一点的。  科学家们长期以来就知道,睡眠可帮助增进学习及记忆,尽管这一过程是如何发挥作用的则一直晦暗不明,尤其是当睡眠被显示会减少脑中的突触数或神经连接时。(寻找睡眠与记忆之间有某种联系的研究人员会期待看到睡眠时突

蒲慕明小组揭示恐惧记忆相关突触特异性变化机制

  今天,中科院上海生科院神经所蒲慕明研究组在《自然·神经科学》上在线发表了题为《与恐惧记忆相关的杏仁核-皮层突触特异性变化》的研究论文,首次揭示了在听觉恐惧记忆中起重要作用的侧杏仁核-听觉皮层投射通路,并发现该通路在听觉恐惧学习后会发生特异性的突触连接重构。研究人员进一步通过双色双光子成像技术发现

2篇Science文章:揭示记忆形成的分子机制

  在发表于1月24日《科学》(Science)杂志上的两篇研究论文中,来自叶史瓦大学阿尔伯特•爱因斯坦医学院的研究人员采用先进的成像技术,为了解大脑生成记忆的机制提供了一扇窗口。这一以往从未在动物体内实现的技术突破使得深入理解记忆的分子基础成为可能:在开发的一种小鼠模型中给一些对生成记忆至关重要的

锂能“抚慰”大脑躁郁

树突棘可能影响若干精神病。图片来源:whitehoune/iStockphoto  公元2世纪,希腊医生和哲学家Galen就建议精神病患者沐浴和饮用热泉水。现在,脑科学家认为Galen的处方起到的作用超过了安慰剂效果。原因正是锂。数十年来,锂一直被认为是躁郁症有效的情绪稳定剂,而Galen知道温泉中

第三军医大学Cell子刊神经学新发现

  来自第三军医大学和德国慕尼黑理工大学的研究人员,证实了当皮质神经元处于自发性高电位状态(Up States)和感官刺激过程中,相同的突触发生了再活化。这一研究发现发表在6月27日的《Cell Reports》杂志上。   来自第三军医大学的谌小维(Xiaowei Chen)教授和德国慕尼黑

谷歌AI自动重构3D大脑 最高精度绘制神经元

  [新智元导读]AI能够映射大脑神经元。人类大脑包含大约860亿个神经元,并且一个立方毫米的神经元可以产生超过1000TB的数据。由于其庞大的规模,绘制神经系统内部结构的过程是计算密集和繁琐的。为了加速这一过程,谷歌和德国马克斯普朗克神经生物学研究所的研究人员开发了一种基于深度学习的系统,可以自动

eLife重大研究成果:短时间的运动就可以增强大脑功能

  大多数人都知道有规律的锻炼对健康有益。而一项新的研究表明,它也会让你更聪明。  俄勒冈州波特兰市OHSU的神经科学家们对老鼠进行了研究,他们发现短时间的运动直接促进了一个基因的功能,这个基因增加了海马区神经元之间的联系,海马区是大脑中与学习和记忆有关的区域。这项研究发表在网上的《eLife》杂志

科学家告诉你运动如何改善健康抵御多种疾病?

  我们都知道,适度运动/体育锻炼有益身体健康,能够降低机体患多种疾病的风险,比如增强骨骼密度、缓解糖尿病的症状等,那么运动到底是通过什么样的机制来给机体带来一定益处的呢?本文中小编就整理了相关研究报道,让科学家们告诉你运动有益机体的机制/分子机制,分享给各位!  【1】对抗癌症,最好的方法是多运动

快速高尔基染色试剂盒(神经元和胶质细胞)使用说明

Golgi-Cox浸染法是研究神经元和胶质细胞正常和非正常形态最有效的方法之一。使用Golgi技术,在药物处理过的动物脑中和因神经疾病死亡的病人脑中发现了神经树突和树突棘微小的形态改变。然而Golgi染色法不可靠且费时,成为这种方法广泛应用的障碍。FD Rapid GolgiStainTM 

Science期刊精华,我国科学家同期发表一篇Science论文

  本周又有一期新的Science期刊(2020年1月31日)发布,它有哪些精彩研究呢?让小编一一道来。图片来自Science期刊。  1.Science:在神经元突起中,单核糖体偏好性地翻译突触mRNA  doi:10.1126/science.aay4991  RNA测序和原位杂交揭示了神经元树

Science:神经元突起中,单核糖体偏好性地翻译突触mRNA

  RNA测序和原位杂交揭示了神经元树突和轴突中存在意想不到的大量RNA种类,而且许多研究已经记录了蛋白在这些区室中的局部翻译。在信使RNA(mRNA)的翻译过程中,多个核糖体可以同时占据单个mRNA(一种称为多核糖体的复合物),从而导致编码蛋白的多个拷贝产生。多核糖体通常在电子显微镜图片中被识别为