Antpedia LOGO WIKI资讯

性染色质检测

实验方法原理 在间期细胞核中,女性X染色质和男性Y染色质均可用特殊染色法显示出来。女性的两个X染色体中的一个,在间期时的染色质呈异固缩(Heteropyconosis),呈深染的小体称Barr氏体。Barr氏体位于间期细胞核内面,呈三角形或半月形小体,易为碳酸复红或硫堇等染料着色。正常女性Barr氏体阳性,男性为阴性。男性Y染色质位于间期细胞核近中央部,易为盐酸阿的平着色,荧光显微镜下观察发较强荧光,呈点状小体,发光部分系Y染色体异固缩的长臂。初代培养细胞和二倍体细胞株均可观察到性染色质,传代细胞系表现不规律。试剂、试剂盒 复红乙醇石碳酸冰醋酸甲醛实验步骤 X染色质显示常用碳酸复红法和硫堇(Thionine)法。一、染色步骤1. 细胞盖片培养细胞用37 ℃的BSS漂洗后,立即投入染色液内染色5~10 分钟(亦可先固定再染色);如用涂片标本则应待涂片干后,迅速投入96 %酒精固定10~15 分钟后再染色; 2......阅读全文

正常血细胞的超微结构

1.透射电镜下的超微结构  (1)粒细胞系统      1)原始粒细胞 平均直径10um左右, 圆形或椭圆形,表面平滑,微绒毛很少。胞核大,核占整个细胞的大部分,呈圆形或椭圆形,可有浅的凹陷,核内常染色质占优势,异染色质少,在核膜处呈薄层凝集,有

正常血细胞的超微结构

1.透射电镜下的超微结构 (1)粒细胞系统 1)原始粒细胞 平均直径10um左右, 圆形或椭圆形,表面平滑,微绒毛很少。胞核大,核占整个细胞的大部分,呈圆形或椭圆形,可有浅的凹陷,核内常染色质占优势,异染色质少,在核膜处呈薄层凝集,有一至几个核位。胞质少,内有大量游离核糖体,糙面

正常血细胞的超微结构

 1.透射电镜下的超微结构 (1)粒细胞系统   1)原始粒细胞 平均直径10um左右, 圆形或椭圆形,表面平滑,微绒毛很少。胞核大,核占整个细胞的大部分,呈圆形或椭圆形,可有浅的凹陷,核内常染色质占优势,异染色质少,在核膜处呈薄层凝集,有一至几个核

Cell Res重点论文:单细胞表观多组学测序技术最新突破

  2017年6月16日,北京大学生命科学学院生物动态光学成像中心汤富酬课题组在《Cell Research》杂志在线发表了题为“Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells”的研

Cell Res重点论文:单细胞表观多组学测序技术最新突破

  2017年6月16日,北京大学生命科学学院生物动态光学成像中心汤富酬课题组在《Cell Research》杂志在线发表了题为“Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells”的研

裴端卿、刘兴国EMBO最新发现重编程新型因子

  来自中科院广州生物医药与健康研究院的研究人员发现染色质松散因子Gadd45a能显著提高重编程效率,这一发现不仅揭示了重编程早期的异染色质变化规律,筛选到新型因子,还建立了筛选染色质松散因子的平台,能广泛应用于细胞命运转换中。  这一研究成果公布在EMBO Reports杂志在线版上,领导这一研究

Nature 表观遗传学进展将遗传学、环境与疾病联系了起来!

  21世纪,表观遗传学的研究得到了快速发展,同时其产生了让研究人员感兴趣和憧憬的东西,当然了,这其中也存在一些大肆宣传的成分,本文中,我们回顾了表观遗传学在过去几十年里是如何演变的,同时分析了近年来改变科学家们对生物学理解的一些研究进展;我们讨论了表观遗传学和DNA序列改变之间的相互作用,以及表观

当下最流行的表观遗传研究检测技术是什么?看看这里……

  11月17日Cell杂志SnapShot专栏介绍了表观遗传研究的检测方法,这四种方法包括:亚硫酸氢钠测序法(bisulfite sequencing)、染色质免疫沉淀测序技术(chromatin immunoprecipiation sequencing)、开放染色质测定(determinati

Cell Research:一类全新植物异染色质蛋白

  研究人员发现一类植物特有的新型组蛋白甲基化阅读器ADCP1,并确定其为动物HP1(Heterochromatin Protein 1,异染色质蛋白1)功能同源蛋白,揭示出其在植物异染色质维持和转座子元件沉默中的作用,彰显了不同生命界中表观机制的复杂性和保守性。  2018年11月13日,清华-北

阮一骏团队发明新技术捕获染色体相互作用的液滴

  当今研究3D基因组的技术主要是基于空间临近位点的配对连接,如Hi-C【1】、ChIA-PET【2】等,仅提供群体水平的染色质间的相互作用。虽然single-cell Hi-C可以提供单细胞水平上的染色质相互作用,但会受制于单细胞测序技术的数据稀疏性【3】。  2019年2月19日,来自美国Jac

超高分辨直接观测基因表达的染色质时空调控

  生命科学的一个基本问题是在个体发育中,单个细胞如何分化成各种类型的组织细胞。这个过程高度依赖于基因表达的精确时空调控,而这种细胞特异基因表达与染色质的调控密切相关。比如,不同的顺式调控原件增强子能够在不同细胞中选择性地激活目标基因。每个基因经常由分布在千碱基(kb)甚至兆碱基(Mb)以外的多个增

Cell:首次构建出哺乳动物单细胞染色质可接近性图谱

  科学家们对DNA缠绕和包装到所谓的染色质中的方式感兴趣,这是因为这会影响每个细胞中可用到的遗传信息。DNA就像串在一根绳子上的念珠。在这些分子“念珠”移动的地方会有空间形成,这样蛋白就能够访问和“读取”遗传信息。这种状态或者说这种基因组特征就是染色质可接近性(chromatin accessib

徐国泰博士等揭示ER阳性乳腺癌耐药的表观遗传学机制 ​

  据最新发表于CA Cancer J Clin杂志的全球癌症数据统计,全球每年乳腺癌新发病例约210万,死亡病例62.7万,在所有导致死亡的癌症类型中排名第二【1】。乳腺癌细胞可以依据其表达雌激素受体(Estrogen receptor, ER)、孕激素受体 (Progesterone recep

研究揭示H2AK119ub1在染色质蔓延以及跨细胞周期继承机制

  3月23日,中国科学院生物物理研究所生物大分子国家重点实验室李国红课题组在Nature Cell Biology上发表了题为RYBP/YAF2-PRC1 complexes and histone H1-dependent chromatin compaction mediate propaga

顶级科学家张毅Cell发布重要成果

  来自波士顿儿童医院、美国国立卫生研究院的研究人员揭示出了,小鼠着床前发育过程中的染色质调控景观。这项重要的研究工作发布在6月2日的《细胞》(Cell)杂志上。  著名华人科学家张毅(Yi Zhang)教授是这篇论文的通讯作者。几年前,汤姆森科技信息集团旗下《科学观察》(Science Watch

Nature子刊:你的DNA为何没有乱成一团

  我们每一个细胞的细胞核中,都包裹着长达三米的DNA。这些DNA压缩在如此狭小的空间中,却依然能够井然有序的进行复制,科学家们最近揭示了这其中的奥秘。  Bar-Ilan大学Yuval Garini教授领导的研究团队发现,蛋白lamin A在维持基因组结构的稳定性中起到了核心作用。这种蛋白能让染色

染色质,解锁癌症表观遗传学的钥匙

  表观遗传学指基因序列不变化的前提下,基因表达发生了可遗传的变化,包括DNA甲基化、染色质改型、基因沉默、RNA编辑、组蛋白修饰(甲基化、乙酰化、磷酸化等)等。其中,染色质改型调控基因表达的过程,涉及多种导致DNA和组蛋白组成变化、染色质构象变化的蛋白质。  众多研究已经证明,染色体畸变和染色质异

测量单个细胞染色质可接近性,从而揭示胚胎发育路径

  在一项新的研究中,美国华盛顿大学和位于德国海德堡市的欧洲分子生物学实验室的研究人员证实细胞类型和发育阶段能够从数千个单细胞的染色质可接近性(chromatin accessibility, 也译作染色质开放性)测量中推导出来。他们利用这种方法发现正在发育的胚胎中的细胞如何调节它们的身份,从而决定

两篇Nature技术文章介绍基因组组织

  【摘要】近期两项最新的研究报道了染色体构象捕获领域的技术进展,第一篇文章描述了一种高分辨率4C-seq 新型工作流程和计算通道,第二篇则报告一种新策略,能同时消除Hi-C数据中多个背景来源。   染色体构象捕获(3C)技术正在改变我们对于基因组空间组织构架的理解。然而目前推测染色质相互作用,却

利用纳米孔测序技术揭示基因表达的染色质调控基础

  作为染色质的基本单元,核小体由大约147 bp的DNA和组蛋白八聚体(H2A, H2B, H3和H4)组成。核小体的动态定位和折叠组织会产生两种不同的染色质状态:“开放”(open)和“闭合”(closed)。核小体的定位和染色质状态的动态变化对以DNA为模板的生物学过程(比如,转录、DNA复制

北大汤富酬课题组发表单细胞表观多组学测序技术新成果

  2017年6月16日,北京大学生命科学学院生物动态光学成像中心汤富酬课题组在《Cell Research》杂志在线发表了题为“Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells”的研

解析肿瘤Hi-C多组学研究策略

Hi-C (High-through chromosome conformation capture) 是以整个细胞核为研究对象,利用高通量测序技术,结合生物信息分析方法,研究全基因组范围内整个染色质DNA在空间位置上的关系,获得高分辨率的染色质调控元件相互作用图谱。Hi-C可以与RNA-S

Rett综合症突变削弱MeCP2介导的染色质液—液相分离形成

  2月28日,中国科学院生物物理研究所李国红课题组与清华大学生命学院李丕龙课题组合作在Cell Research上发表题为Rett syndrome mutations compromise MeCP2-mediated liquid-liquid phase separation of chro

Cell解开细胞的程序密码

  来自慕尼黑大学(LMU)的研究人员在一项针对夜行动物视网膜细胞的研究中,取得了关于基因组DNA组装的一些基础认识,揭示了核膜影响细胞核结构和基因调控的机制。这一研究结果发表在1月31日的《细胞》(Cell)杂志上。   构成遗传物质的双链DNA分子缠绕着蛋白质复合物形成致密的“染色质”。

肿瘤脱落细胞的形态特征

 脱落细胞学主要是研究恶性肿瘤细胞的异型性,根据细胞的异型性作出正确的判断。但是任何一种异型性表现都不能作为绝对批征,必须综合判断,并以淫片中背景细胞作为照比较,慎重下结论。   一、恶性肿瘤细胞的一般形态特征       (一)恶性肿瘤细胞核异型性表现   1

肿瘤脱落细胞的形态特征

 脱落细胞学主要是研究恶性肿瘤细胞的异型性,根据细胞的异型性作出正确的判断。但是任何一种异型性表现都不能作为绝对批征,必须综合判断,并以淫片中背景细胞作为照比较,慎重下结论。  一、恶性肿瘤细胞的一般形态特征  (一)恶性肿瘤细胞核异型性表现  1.核增大,大小不等,由于肿瘤细胞生长旺盛,

组蛋白研究进展速览!

  本文中,小编盘点了多篇研究报告,共同解析科学家们在组蛋白研究上取得的新成就,与大家一起学习!图片来源:Daniel N. Weinberg et al,doi:10.1038/s41586-019-1534-3  【1】Nature:揭示组蛋白标记H3K36me2招募DNMT3A并影响基因间DN

细胞凋亡形态学检测与观察

hoechst33258染色,他们认为细胞发生凋亡时,染色质会固缩。 所以Hoechst染色时,细胞核会呈致密浓染,或呈碎块状致密浓染。正常细胞核刺激后有致密浓染的凋亡细胞  AO-EB染色法:The image below shows human lymphoma cells

Cell揭示癌症转移新机制

  来自斯坦福大学医学院的研究人员揭示出,Nfib通过广泛提高染色质的可接近性促进了癌症转移。这一研究发现发布在6月30日的《细胞》(Cell)杂志上。  斯坦福大学医学院遗传系助理教授William J. Greenleaf,及遗传学系与病理学系助理教授Monte M. Winslow博士是这项研

研究发现压力如何影响机体健康

  本文中,小编整理了多篇研究成果,共同解读压力如何影响机体健康,分享给大家!  图片来源:intelligentinsurer.com  【1】Nature:早期压力可有助于延长寿命  doi:10.1038/s41586-019-1814-y  一项发表在Nature杂志上的最新研究发现,年轻时