朱冰:表观遗传学过去,现在,未来

由北京生命科学研究所朱冰研究组领衔完成的Science研究论文,揭示出染色质的紧密程度能调节组蛋白H3K27甲基化酶复合体PRC2的催化活性,从而影响基因转录,这有助于解析基因转录调控以及基因沉默的重要机制。为了更深入追踪这项研究的具体内容,生物通特联系了朱冰研究员,就几个方面请教了他。 目前常将所有组蛋白修饰称为“表观遗传(epigenetic)”,但某些组蛋白修饰,比如组蛋白H3上赖氨酸27(H3K27)的甲基化比其它修饰更具表观遗传特征,因为它能在细胞周期中被继承(epigenetic,表观遗传),从而实现对早期事件的“细胞记忆”。 过去三年里发表的一系列文章――包括朱冰研究组此次发表的这篇文章――都揭示出了H3K27甲基化酶复合体PRC2(Polycomb repressive complex 2)的几种微妙的调节机制,比如这篇文章指出了PRC2在不同紧密程度染色质上的不同活性,表明PRC2能够感......阅读全文

朱冰:表观遗传学过去,现在,未来

  由北京生命科学研究所朱冰研究组领衔完成的Science研究论文,揭示出染色质的紧密程度能调节组蛋白H3K27甲基化酶复合体PRC2的催化活性,从而影响基因转录,这有助于解析基因转录调控以及基因沉默的重要机制。为了更深入追踪这项研究的具体内容,生物通特联系了朱冰研究员,就几个方面请教了他。   

表观遗传学和人类疾病

上个世纪50年代初,Watson和Crick建立了DNA分子结构模型,极大程度地促进了生命科学的发展。自此遗传学便成为现代医学研究领域中一个重要的分支。人类已经认识到基因突变可以导致疾病的发生,如慢性进行性舞蹈病(Huntington's chorea, Hc)和囊性纤维化等。近年来

上海生科院揭示等位遗传调控机制

  5月14日,国际学术期刊Cell Reports在线发表了中国科学院上海生命科学研究院植物逆境生物学研究中心朱健康研究组题为Involvement of multiple gene silencing pathways in a paramutation-like phenomenon in A

组蛋白修饰与DNA甲基化之间的关系

在引起基因沉默的过程中,沉默信号(DNA甲基化、组蛋白修饰、染色质重新装配)是如何进行的?谁先谁后?这是一个“鸡和蛋”的问题,目前仍处于研究阶段,还没有定论。研究发现DNA甲基化和组蛋白乙酰化是一个相互促进、加强的过程,如许多HDAC可以和DNMTl、3a、3b相互作用;而甲基化CpG结合蛋白—

Nature-表观遗传学进展将遗传学、环境与疾病联系了起来!

  21世纪,表观遗传学的研究得到了快速发展,同时其产生了让研究人员感兴趣和憧憬的东西,当然了,这其中也存在一些大肆宣传的成分,本文中,我们回顾了表观遗传学在过去几十年里是如何演变的,同时分析了近年来改变科学家们对生物学理解的一些研究进展;我们讨论了表观遗传学和DNA序列改变之间的相互作用,以及表观

清华团队Nature、Cell子刊连发多项表观遗传学成果

  表观遗传学修饰可以在不改变DNA序列的情况下调控基因的活性,对于人类发育和人类疾病有深远的意义。组蛋白修饰是一种重要的表观遗传学修饰,包括甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化等等。  组蛋白修饰可以调控许多关键的细胞过程。不过,人们一直不清楚组蛋白的这些标签是否能从哺乳动物生殖细胞传

研究发现染色质装配因子1具有重要表观遗传调控作用

  中国科学院生物物理研究所焦仁杰研究员课题组最新研究发现,染色质装配因子 1(chromatin assembly factor 1, CAF-1)对异染色质区域的基因表达发挥十分重要的表观遗传调控作用。他们的成果已被细胞生物学研究领域的专业期刊J. Cell Sci.接受发表。

程晓东《自然》文章揭示表观遗传学研究的新线索

来自美国Emory大学华裔教授程晓东(Xiaodong Cheng)领导的研究组发现了小鼠基因组中DNA序列的一种特殊模式,该模式在DNA分子调节基因表达的方式中起到基础性作用。该研究组与来自德国Jacobs大学的同事在8月22日的的《自然》杂志网络版上公布了这些发现。 自从科学家破解了构成人类

新的基因编辑领域突破口——表观遗传调控(一)

几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白修饰

著名学者朱健康Cell子刊表观遗传研究新文章

  来自中国科学院上海生命科学研究院和普渡大学的研究人员证实,甲基化CpG结合蛋白MBD7促进DNA主动去甲基化,限制了DNA高度甲基化以及转录水平的基因沉默。这一重要的研究发现发表在2月12日的《分子细胞》(Molecular cell)杂志上。  任职于中科院上海生命科学研究院和普渡大学的朱健康

Science新文章解析癌症表观遗传

  目前大多数癌症治疗的效果并不理想。在力图根除肿瘤之时,肿瘤学家们往往借助于放疗或化疗,这使得在遏制癌性生长的同时也导致了健康组织受损。来自洛克菲勒大学C. David Allis实验室的一项新研究,或许可以使科学家们朝着高精确度靶向肿瘤的癌症治疗更近一步。他们的研究结果在线发表在3月2

表观遗传学修饰

组蛋白修饰 表观遗传学是指表观遗传学改变 (DNA 甲基化、组蛋白修饰和非编码 RNA 如 miRNA) 对 表观基因组基因表达的调节,这种调节不依赖基因序列的改变且可遗传表观。因素如 DNA 甲基化、组蛋白修饰和 miRNA 是对环境刺激因素变化的反映,这些表观遗传学因素相互作用以调节基因

Cell新发现颠覆表观遗传传统认知

  来自美国托马斯杰斐逊大学的一个研究团队获得了关于组蛋白修饰作用相反的证据。在一项果蝇胚胎研究中,他们发现亲代的甲基化组蛋白并没有转移给子代DNA。相反,在DNA复制后,由新合成的未修饰组蛋白组装成了新的核小体。相关论文发布在8月23日的《细胞》(Cell)杂志上。   托马斯杰斐逊大学生物化学

著名学者朱健康院士Cell-Research发表表观遗传学研究成果

  生物通报道:转座子通常是通过表观遗传学机制(包括DNA甲基化)保持沉默的。12月9日,在《Cell Research》杂志上发表的一项研究中,来自中科院上海生命科学研究院、美国普渡大学以及中科院遗传与发育生物学研究所的研究人员,在拟南芥中将一对Harbinger转座子衍生蛋白(HDPs)——HD

染色质,解锁癌症表观遗传学的钥匙

  表观遗传学指基因序列不变化的前提下,基因表达发生了可遗传的变化,包括DNA甲基化、染色质改型、基因沉默、RNA编辑、组蛋白修饰(甲基化、乙酰化、磷酸化等)等。其中,染色质改型调控基因表达的过程,涉及多种导致DNA和组蛋白组成变化、染色质构象变化的蛋白质。  众多研究已经证明,染色体畸变和染色质异

microRNA的肿瘤抑制因子角色

美国南加州大学的研究人员报道说,一种新的方法通过活化癌细胞基因组中保护性的microRNA的表达,从而使致癌基因的表达水平显著降低。这篇发表在6月的Cancer Cell杂志上的文章证明已知能调节基因表达的制剂还能够影响调节性的RNA。这种调节性的RNA即为microRNA,它能充当正常细胞中的肿瘤

新的基因编辑领域突破口—表观遗传调控

  几十年来,DNA一直被认为是决定生命遗传信息的核心物质,但是近些年不断的研究表明,生命遗传信息从来就不是基因所能完全决定的,比如科学家们发现,可以在不影响DNA序列的情况下改变基因组的修饰,这种改变不仅影响个体的发育,而且还可遗传给后代。如肿瘤等多种疾病并非仅由基因突变而引起,且与DNA和组蛋白

Nature重要发现:跳跃基因的拦路虎

  一个称之为组蛋白的蛋白质家族为DNA提供了支持和并赋予其结构,然而多年来科学家们一直对其中的一些非常规组蛋白感到迷惑不解,它们似乎是因为特殊而又通常神秘的原因而存在。现在,研究结果揭示出了这样一种组蛋白变体的新用途:通过让某些所谓的“跳跃基因”待在合适的位置阻止了遗传突变。  这项由洛克菲勒大学

朱冰研究组继Science后再发PNAS文章

  北京生命科学研究所朱冰实验室今年8月在Science杂志上发表了题为“Dense Chromatin Activates Polycomb Repressive Complex 2 to Regulate H3 Lysine 27 Methylation”的研究论文,发现组蛋白甲基化酶P

研究发现去甲基化酶REF6是基因组中靶向的重要因素

  核小体是真核生物染色质的基本单位,由DNA缠绕组蛋白八聚体构成。组蛋白翻译后共价修饰是表观遗传调控的重要方式之一,通过影响染色质的状态而调控基因表达等过程。组蛋白H3第27位赖氨酸的三甲基化修饰(H3K27me3)通过维持基因的沉默状态,在动植物细胞命运决定以及生长发育中发挥重要的调控作用。基因

Cancer-Cell专题:癌症表观遗传学

  癌症中的基因调控与反调控一直是人们关注的热点,现在这一领域已经取得了很大的进展。Cell旗下的Cancer Cell杂志本月特别推出专题,推荐了四篇有代表性的癌症表观遗传学文章。  Vulnerabilities of Mutant SWI/SNF Complexes in Cancer  癌症

研究发现植物DNA主动去甲基化新机制

  近期《美国国家科学院院刊》(PNAS)杂志在线发表了中国科学院分子植物科学卓越创新中心上海植物逆境生物学研究中心朱健康研究组题为Histone Acetylation Recruits the SWR1 Complex to Regulate Active DNA Demethylation i

上海生科院揭示拟南芥DNA主动去甲基化调控新机制

  12月9日,《细胞研究》(Cell Research)杂志在线发表了中国科学院上海生命科学研究院上海植物逆境生物学研究中心朱健康研究组题为A pair of transposon-derived proteins function in a histone acetyltransferase c

植物DNA去甲基化的机理和功能

  10月19日,Journal of Integrative Plant Biology(JIPB)在线发表了中国科学院分子植物科学卓越创新中心上海植物逆境生物学研究中心郎曌博研究组题为The mechanism and function of active DNA demethylation i

ChIPChip技术的介绍与应用

人类基因组计划的完成开启了一个新的纪元——功能基因组时代来临,与基因信息相比较,人们更关注于基因的功能、调控网络与信号通路等信息。表观遗传学研究与核内蛋白因子的功能分析成为基因表达调控研究的重要组成部分。结合了染色质免疫共沉淀与基因芯片技术的ChIP-chip技术的浮现使得全基因组范围内DNA与蛋白

清华大学Cell子刊发表表观遗传学新成果

  组蛋白修饰和DNA甲基化是重要的表观遗传学修饰,决定着基因组的表观遗传学景观。组蛋白修饰和DNA甲基化能共同起作用调控基因的表达,但人们并不清楚它们在作用机制和功能上的具体关联。  清华大学和洛克菲勒大学的研究团队发现,改变DNA甲基转移酶的组蛋白识别区域会影响表观遗传学景观和小鼠的胚胎干细胞。

遗传发育所等在表观遗传调控水稻转座子活性方面获进展

  转座元件是指在基因组中能够移动或复制并重新整合到基因组新位点的DNA片段,它们对动植物基因组的组成、进化和基因表达具有重要影响。而在宿主基因组中,如果失去对转座元件的有效抑制,这些元件将对基因表达和基因组的稳定性构成影响。水稻是主要的粮食作物同时也是重要的单子叶模式植物,其中

厦门大学PNAS发表癌症研究新成果

  来自厦门大学的研究人员证实,Menin通过表观遗传上调Yap1的转录促进了肝癌的形成。这一研究发现在线发表在10月7日的《美国科学院院刊》(PNAS)上。   文章的通讯作者是厦门大学金光辉(Guang-Hui Jin)教授,金教授早年毕业于白求恩医科大学,主要研究领域为探讨疾病发病进程中

上海生科院发现植物去甲基化调控的新机制

  2月12日,国际权威学术期刊《分子细胞》(Molecular Cell)在线发表了中国科学院上海生命科学研究院上海植物逆境生物学研究中心朱健康课题组的研究论文The Methyl-CpG-Binding Protein MBD7 Facilitates Active DNA Demethylat

表观遗传学名词解释

表观遗传学(英语:epigenetics)又译为表征遗传学、拟遗传学、表遗传学、外遗传学以及后遗传学,在生物学和特定的遗传学领域,其研究的是在不改变DNA序列的前提下,通过某些机制引起可遗传的基因表达或细胞表现型的变化。表征遗传学是1980年代逐渐兴起的一门学科,是在研究与经典的孟德尔遗传学遗传法则