Antpedia LOGO WIKI资讯

中国科学报:基因治疗如何走出泥潭

基因本身是无法自己进入到细胞体内的,必须依靠一定的载体才行,而病毒就是最好的选择,因为病毒可以侵入人体。可是病毒插入染色体后的位置是随机的,谁也无法保证它不会突然触碰到某些癌基因,治病不成,反把它们给激活了。 距离基因治疗的第一例人体试验已经过去二十多年了,然而,这项曾被寄予厚望的治疗手段至今难以真正在临床上实现应用,人们也经历了从开始的盲目乐观与热情到意识到其副作用时的失望与怀疑。也许,回归理性并坚持走下去,基因治疗才有前途。 据2012年12月24日BBC报道,英国科学家分析了20个具有肠癌家族遗传史的人的基因组,发现了两处会引起肠癌发病率显著升高的基因变异,分别是POLE和POLD1。POLE 和 POLD1是负责DNA损伤修复的基因,这两个基因功能异常会导致损伤的DNA积累,从而有可能引起肠癌。而这一结果也被认为有助于医生识别出肠癌高危人群,进行早期诊断和治疗。 事实上,从2000年“人类基......阅读全文

7种遗传疾病得到治疗,8篇NEJM(IF=79),1篇Nature

  在医学领域,基因治疗(gene therapy)是指将外源正常基因导入靶细胞,以纠正或补偿缺陷和异常基因引起的疾病,以达到治疗目的。也包括转基因等方面的技术应用。也就是将外源基因通过基因转移技术将其插入病人的适当的受体细胞中,使外源基因制造的产物能治疗某种疾病。修改人类DNA的第一次尝试是由Ma

浅谈基因治疗药物市场战略投资展望

  基因治疗(genetherapy):指用(正常或野生型)基因导入人体的细胞,使其发挥生物学效应,从而达到治疗疾病目的的技术方法。   基因治疗是随着20世纪七八十年代DNA重组技术、基因克隆技术等的成熟而发展起来的最具革命性的医疗技术之一,它是以改变人的遗传物质为基础的生物医学治疗手段,在重大

分子诊断与分子治疗是当代医学发展的必然

  医学科学发展的实践已经并且必将继续表明,科学与技术的发明和重大发现对医学科学的发展产生着重要的影响。诊断与治疗是医学科学的两个重要方面和组成部分,诊断与治疗学科的发展与进步也无不打上不同时代科学技术进步的烙印。   纵观医学诊断和治疗学科的发展历程,正是由于包括物理学、化学、免疫学、

浅述分子诊断的前世今生及未来

  分子诊断与治疗是当代医学发展的必然   纵观医学诊断和治疗学科的发展历程,正是由于包括物理学、化学、免疫学、分子生物学等学科在内的一个个犹如星斗般灿烂的重大发现和发明,才使得医学诊断与治疗学科与时俱进,不断丰富、发展与完善。 分子诊断学发展历程   以DNA双螺旋结构的模型提出为标志,分子

细胞治疗驶入快车道 2018细胞治疗国际研讨会在沪召开

  分析测试百科网讯 2018年5月17日,2018(第九届)细胞治疗国际研讨会在上海召开。本次会议设置主论坛、细胞治疗学术专场、细胞治疗临床研究专场,细胞治疗产业论坛等,邀请了国内外顶尖的细胞治疗基础研究和临床专家、业内行家以及药物评审专家,针对细胞治疗的临床监管、治疗规范、细胞治疗安全性,新型C

常用的分子生物学基本技术2

IS PCR的技术特点 (1)既具有PCR的特异性与高灵敏性,又具有原位杂交的定位准确性;(2)测到低于2个拷贝量的细胞内特定DNA序列,甚至可检测出单一细胞中的仅含一个拷贝的原病毒DNA;(3)有助于细胞内特定核酸序列定位与其形态学变化的结合分析;(4)可用于正常或恶性细胞,感染或非感染细胞的鉴定

Nat Med:碱基编辑器关于治疗先天性疾病取得重大进展!

  在一项新的研究中,来自美国费城儿童医院和宾夕法尼亚大学佩雷尔曼医学院的研究人员首次进行产前基因编辑来阻止实验室动物出现致命性的代谢障碍,从而有潜力在出生前治疗人类先天性疾病。这就为在产前利用一种复杂的低毒的工具高效地对致病性基因中的DNA碱基进行编辑提供了概念验证。相关研究结果发表在2018年1

常用的分子生物学基本技术

核酸分子杂交技术由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的

基因治疗:英国开展基因疗法治疗心衰竭临床试验

  4月30号,英国宣布开展两项利用基因疗法治疗心脏病的试验。如果该试验最后取得成功将给那些渴望过上正常生活的心衰患者带来新的希望。这两项试验共有250名左右的患者参与,将对这种前沿技术的安全性,以及是否能够改善患者生活质量、提高寿命进行研究。   基因治疗的根本原理是向人体中“插入”缺失或缺陷基

DNA重组及基因工程技术对医学和生命科学发展的贡献 二

  四、基因诊断与基因治疗  基因克隆和基因分析的手段得到与人类疾病有关的基因异常变化、以及致病微生物基因结构方面的知识,就可能用检测和分析基因的方法去诊断疾病。对与疾病相关的基因及其调控了解,就有可能导入外源目的基因去纠正基因缺陷或改变基因表达调控以期达到治疗疾病的目的。这些都是分子生物

研发 | 2019年需要重点关注的临床试验(上篇)

  开发一种药物可能需要几十年、数十亿美元,药物的命运取决于临床试验的结果,通常也紧紧联系着开发人员。  2018年受到密切关注的肿瘤免疫组合pembrolizumab(Keytruda)与IDO抑制剂epacadostat联用的临床3期试验失败,一时间激起了肿瘤领域的涟漪,导致几家公司(包括百时美

基因疗法在重塑脊髓性肌萎缩等遗传病治疗方面的新药

  近日,诺华制药公司旗下AveXis宣布,美国食品和药物管理局(FDA)已批准Zolgensma(onasemnogene abeparvovecv-xioi)用于治疗2岁以下脊髓性肌萎缩症(SMA)患儿,患者存活运动神经元1 (SMN1)基因存在双等位基因突变。  Zolgensma旨在通过提供

GEN:基因编辑之下,罕见病治疗触目可及

图片来源:Pixabay  除了制药、生物技术和医疗器械公司,针对罕见病进行的基因治疗也得到政府的支持。  例如,美国国立卫生研究院(NIH)共同基金为NIH未诊断的疾病网络分配了约2亿美元,以加速对罕见和未知疾病的诊断及致病机理的揭示等工作。  此外,NIH已经启动了罕见和被忽视疾病的治疗方案(T

外泌体的应用——有机遇,也有挑战

  外泌体作为疾病诊断标志物的潜在应用依赖于基于外泌体的药物递送系统的技术突破,要将其用于临床治疗,外泌体的大规模工业化生产面临很大的挑战。  外泌体(exosome)是细胞分泌囊泡(extracellular vesicles)的一种亚型,存在于生物体液中,并参与多种生理和病理过程。外泌体被认为是

北大生科院最新综述:基因疗法新进展

  帕金森病和阿尔茨海默氏病是世界范围内最普遍的神经退行性疾病。常规药物和手术治疗只能缓解症状,不能推迟或者终止疾病进程。近年来分子生物学与医学研究进展促进了对帕金森病和阿尔茨海默氏病发病机制的深入了解,为其基因治疗策略提供了理论和实验依据。近期来自北京大学生命科学学院的研究人员围绕目前帕金森病、阿

细胞治疗类产品可按药品进行注册上市

  为贯彻落实中共中央办公厅、国务院办公厅《关于深化审评审批制度改革鼓励药品医疗器械创新的意见》(厅字〔2017〕42号)和《国务院关于改革药品医疗器械审评审批制度的意见》(国发〔2015〕44号),国家食品药品监督管理总局组织对《药品注册管理办法》进行了修订,起草了《药品注册管理办法(修订稿)》,

活体动物体内生物发光和荧光成像技术基础原理与应用二

(二)活体生物发光成像技术应用领域活体生物发光成像技术是一项在某些领域有不可替代优势的技术,比如肿瘤转移研究、药物开发、基因治疗、干细胞示踪等方面。1.肿瘤学活体生物发光成像技术能够让研究人员能够直接快速的测量各种癌症模型中肿瘤的生长、转移以及对药物的反应。其特点是极高的灵敏度使微小的肿瘤病灶(少到

关于外泌体目前最火热的研发方向深度解读

刚登 nature 又上 science,外泌体为啥这么火 近几年外泌体研发持续升温,全球科研大咖纷纷扎堆此领域,有关外泌体载药、诊断、免疫疗法等方向的文章陆续发表在Science、Nature等各大顶级期刊上,外泌体已成为生命科学/基础医学研究的一大热点。图自网络 外泌体是由哺

纳米药物是21世纪医学技术重要方向

          中科院副秘书长谭铁牛(前排左三)等会见出席第331次香山科学会议的美国NIH副院长 Michael Gottesman博士(前排右三)等美国科学家。   以“肿瘤纳米技术与纳米药物”为主题的第331次香山科

可视纳米基因载体为磁共振可视化治疗应用研究奠定基础

  《纳米尺度》杂志近日报道了中科院深圳先进技术研究院关于自组装高灵敏度MRI探针在微环DNA传递中的应用研究。   据介绍,微环DNA被认为是最具潜力的基因治疗载体,而如何实现微环DNA的高效递送以及载体非侵入性生物学信息的获取是当前亟待解决的问题。聚乙烯亚胺(PEI)作为阳离子基因传递载体,已

磁共振可视纳米基因载体研究获进展

  最新发布的2013年1月SCI学术期刊《纳米尺度》(Nanoscale)中报道了由中国科学院深圳先进技术研究院医工所劳特伯生物医学成像研究中心磁共振(MRI)分子影像研究组与医药所肝脏基因与细胞治疗中心合作完成的最新科研成果:自组装高灵敏度MRI探针在微环DNA(Minicircle DNA

国家纳米中心利用核酸自组装结构实现基因药物递送

  基因治疗是一类在疾病发生的最根本层面上实现相关治疗的研究策略。现已上市的基因治疗药物大多是以病毒为载体实现基因递送的。病毒载体的引入无疑会引起人们对该类治疗体系的生物安全性产生顾虑。因此,发展生物相容的基因递送载体就显得越来越重要,并且成为具有挑战性的前沿课题之一。近年来发展起来的DNA折纸纳米

多项仪器研发项目列入863计划和2014备选项目

  一、前沿生物技术主题  1.蛋白质测序新技术新装备及配套试剂国产化  (1)阵列毛细管柱蛋白质分离-阵列点样装置  研制二维阵列毛细管分离新装置,第一维分离柱可分离48个馏分,第二维维阵列毛细管分离柱可同时分离48个流份;开发阵列紫外检测器; 研制多柱点样头并行点样器和流份收集器;开发

如何从“种子”中探索生命密码?

  一粒种子为什么能长成一棵参天大树?一窠鸟蛋为什么会孵化出一只只鸟儿?而我是谁?我究竟从哪儿来?是谁创造我的身体,操纵着我的意识、情感以及记忆?也许人类生命的所有信息也存储在一颗颗”种子”中。我们要如何从这些“种子”中探索生命的密码?未来科技又该如何破译其中的谜团,带给我们一些怎样的启迪?  破译

GE医疗细胞与基因治疗亚洲技术中心盛大开幕

  打造GE医疗亚洲首个细胞及基因治疗实验室,赋能中国精准医疗新发展。  中国上海(2018年7月19日)  -为加速细胞治疗与基因治疗的临床转化流程、推进全产业链的商业化进程,GE医疗今日宣布在位于其上海浦东张江的中国研发中心建设成立全新的细胞与基因治疗亚洲技术中心。该中心的成立标志着G

核酸提取产品的市场概况和主要品牌

市场概况:2019年,全球核酸分离和纯化市场规模估计为24亿美元,预计在预测期内(2020 - 2027)复合年增长率为7.2%。几个RNA物种代表了一个广泛的、未被开发的生物分子类别,在疾病发展过程中发挥着至关重要的作用。这增强了RNA治疗的渠道,反过来,又推动了核酸分离和纯化方法在药物开发中的应

单核苷酸多态性(single nucleotide polymorphisms,SNPs)简介

摘要对单核苷酸多态性(single nucleotide polymorphisms,SNPs)的研究分析近几年被广泛应用于生物及医学研究的诸多领域,筛查SNPs的方法很多,各具特色,并一直不断地发展.本文对筛查SNP的几种常用及最新方法做一简要介绍,其中包括PCR-RFLP,分子信标等.细胞外基质

Abeona Therapeutics (NASDAQ: ABEO): 小儿罕见病的基因守护者

  导言 :古罗马神话中有专门一族神明负责守护小孩的怀孕、妊娠、分娩等过程,同时还守护婴儿的发育等过程。Abeona就是这些众神中的一个,她的任务就是专门负责小孩学习走路的。今天介绍的这家公司的名字就叫Abeona Therapeutics。   Summary   Abeona采用的罕见病策略

Abeona Therapeutics (NASDAQ: ABEO): 小儿罕见病的基因守护者

  导言 :古罗马神话中有专门一族神明负责守护小孩的怀孕、妊娠、分娩等过程,同时还守护婴儿的发育等过程。Abeona就是这些众神中的一个,她的任务就是专门负责小孩学习走路的。今天介绍的这家公司的名字就叫Abeona Therapeutics。   Summary   Abeona采用的罕见病策略

Nature Biotechnology:北京大学魏文胜团队开发新型编辑技术

  2019年7月15日,北京大学生命科学学院魏文胜课题组以长文形式于Nature Biotechnology在线发表了题为“Programmable RNA editing by recruiting endogenous ADAR using engineered RNAs”的研究论文,首次报道