Cell:单颗粒冷冻电镜技术入门指南及突破进展
结构生物学的主要目标是,从机制上理解关键的生物学过程。研究这些过程中的大分子和复合体,确定它们的原子结构,可以得到最详细的基础信息。除此之外,获得药物靶标的原子结构也是药物开发的标准程序,人们可以在此基础上设计和优化治疗性的化合物。 不久以前,单颗粒冷冻电镜(cryo-EM)还不是大多数结构生物学家们的第一选择。2013年以前,蛋白数据库(PDB)中的绝大多数原子结构还是X射线晶体衍射获得的。而现在,单颗粒冷冻电镜已经成为了X射线晶体衍射的有力竞争者,不仅在分辨率上能够与之匹敌,还适用于难以结晶的大分子。 本期Cell杂志刊登了华人学者程亦凡(Yifan Cheng)博士的两篇文章。这两篇文章由浅入深的介绍了风头正劲的单颗粒冷冻电镜,为想要试水这一技术的新手们提供了入门指南,并且详细介绍了这一技术近年来取得的重要突破。 程亦凡是加州大学旧金山分校的副教授,他原本是物理学博士,后来改用物理学方法研究生物问题。近来,程亦凡......阅读全文
冷冻电镜单颗粒技术
单颗粒技术对分散分布的生物大分子分别成像,基于分子结构同一性的假设,对多个图像进行统计分析,并通过对正、加和平均等图像操作手段提高信噪比,进一步确认二维图像之间的空间投影关系后经过三维重构获得生物大分子的三维结构方法(图3.4)。其适合的样品分子量范围为80~50MD,最高分辨率约3Å。利用单颗粒技
冷冻电镜单颗粒分析技术入门指南
结构生物学的主要目标是,从机制上理解关键的生物学过程。研究这些过程中的大分子和复合体,确定它们的原子结构,可以得到最详细的基础信息。除此之外,获得药物靶标的原子结构也是药物开发的标准程序,人们可以在此基础上设计和优化治疗性的化合物。 不久以前,单颗粒冷冻电镜(cryo-EM)还不是大多数结构生
Cell:单颗粒冷冻电镜技术入门指南及突破进展
结构生物学的主要目标是,从机制上理解关键的生物学过程。研究这些过程中的大分子和复合体,确定它们的原子结构,可以得到最详细的基础信息。除此之外,获得药物靶标的原子结构也是药物开发的标准程序,人们可以在此基础上设计和优化治疗性的化合物。 不久以前,单颗粒冷冻电镜(cryo-EM)还不是大多数结构生
单颗粒冷冻电镜技术解析核糖体组装的动态过程
核糖体是所有生物用来合成蛋白质的分子机器,是生命的基本元件。核糖体包括大亚基和小亚基,两个亚基都是由核糖体RNA和大量蛋白质构成的大型复合物。在真核细胞中,核糖体的组装是一个高度复杂、动态的过程,两个亚基在成熟过程中会结合大量的组装因子,形成一系列核糖体前体复合物。小亚基在成熟过程中形成两种主要
冷冻电镜颗粒挑选
颗粒挑选接下来需要从原始数据中筛选出颗粒投影,也被称为“颗粒挑选”,颗粒挑选的好坏也将影响所有后续的分析和处理过程,是一个重要并且繁琐的步骤。颗粒挑选方式可以分为手动挑选、半自动挑选和完全自动挑选这几种。在早期的分析中,对于结构的了解还非常少,优先考虑的都是人工挑选。但是自动的颗粒图像获取方法的出现
冷冻电镜单粒子法
三维冷冻电子显微术已经在确定结构组成和大分子复合物的结构层次方面取得了重要进展。单粒子冷冻电镜技术是获得三位重构图像的重要的方法。单粒子法就是对分离纯化的颗粒状分子进行结构分析。既可以对有二十面对称结构的病毒或螺旋对称结构进行分析,也可以对象核糖体等大的可溶性复合物进行结构分析,还可以对溶解状态的
冷冻电镜(cryoEM)单颗粒分析技术解析生物大分子结构
冷冻电镜(cryo-EM)单颗粒分析技术已经成为结构生物学众多结构解析方法中异军突起的一支,在膜蛋白的结构解析中更是发挥着与日俱增的作用。目前的冷冻电镜单颗粒技术已经能较容易地将分子量大于300千道尔顿且生化性质稳定的蛋白质解析至近原子分辨率(约3 埃水平)。但由于小分子量蛋白质(一般为小于20
冷冻蚀刻电镜技术
冻蚀刻(Freezeetching)技术是从50年代开始发展起来的一种将断裂和复型相结合的制备透射电镜样品技术,亦称冷冻断裂(Freezefracture)或冷冻复型(Freezereplica),用于细胞生物学等领域的显微结构研究。
冷冻电镜单粒子法及其应用
冷冻电镜单粒子法使我们在分子水平对生命过程有了新的认识。核糖体是一个由多种结构相互作用形成的RNA蛋白质复合体,他的结构解析是对这种技术应用的最好说明。从7 0年代Frank开始对核糖体进行单颗粒分析以来 ,二十多年的努力使得大肠杆菌70S核糖体1.5nm分辨率的三维结构已经得到揭示。从这个三维结构
冷冻蚀刻免疫电镜技术
实验原理 冷冻蚀刻法(Freeze Ftching),也称冷冻复型法(Freeze Replica)或冷冻切断(Freeze Fracture),是研究生物膜结构的重要方法之一。其主要步骤首先是将样品在液氮中冷冻,然后放到真空喷镀仪中切断,切断后的切面上有细胞器,其间还有冻成洋的水分。再加热使冰升华
冷冻电镜技术总结
冷冻电镜技术从建立到现在在结构测定中取得了快速的发展,这也表明了了对整个细胞和细胞器的分子成分的空间结构的描述可能很快就会成为常规方法。冷冻电镜单粒子法既可以对具有对称结构的大分子进行研究,也适合于研究结构不规则的大分子复合物,对于分子量的上限没有什么限制,理论上>100kD的分子在成像技术能够保证
冷冻蚀刻免疫电镜技术
实验概要本文介绍了冷冻蚀刻免疫电镜技术,包括:冷冻蚀刻表面标记免疫电镜技术和断裂—标记免疫电镜技术。实验原理冷冻蚀刻法(Freeze Ftching),也称冷冻复型法(Freeze Replica)或冷冻切断(Freeze Fracture),是研究生物膜结构的重要方法之一。其主要步骤首先是
冷冻电镜技术介绍
2017诺贝尔化学奖2017年诺贝尔化学奖授予了理查德·亨德森(Richard Henderson)、约阿希姆·弗兰克(Joachim Frank)和雅克·杜博歇(Jacques Dubochet),表彰他们在冷冻电镜技术的发展上做出的卓越贡献。 分辨率对比 他们将冷冻电镜技术简化,并将其应用在生
什么是冷冻电镜技术
冷冻电镜技术开创者曾摘得2017年诺贝尔化学奖,这种技术结合电子显微镜、超低温冷冻和计算机图像处理手段,可以抓拍生物分子的高清“工作照”。研究人员将样本在零下180摄氏度下冷冻,拍摄了约100万张独立的快照,组合起来后,清晰地看到RNA聚合酶III与DNA结合,拆开DNA双链,准备进行代码转录的情景
“冷冻电镜技术”是什么
冷冻电镜用于扫描电镜超低温冷冻制及传输技术(Cryo-SEM)实现直接观察液体、半液体及电束敏品物、高材料等品经超低温冷冻、断裂、镀膜制(喷金/喷碳)等处理通冷冻传输系统放入电镜内冷台
冷冻蚀刻电镜技术装置型号
装置型号目前,冷冻蚀刻装置的型号很多,但主要分为两种类型:一种是专用冷冻蚀刻装置,如EIKO公司生产的FD2A型、FD3型,BALZERS公司生产的BAF300型;另一种是真空喷镀仪的冷冻蚀刻附件,如日立公司生产的HFZ1型,它与FE1型加温蚀刻装置一起安装在HUS5型真空喷镀仪中使用。以
冷冻蚀刻电镜技术优缺点
折叠优点①样品通过冷冻,可使其微细结构接近于活体状态;②样品经冷冻断裂蚀刻后,能够观察到不同劈裂面的微细结构,进而可研究细胞内的膜性结构及内含物结构;③冷冻蚀刻的样品,经铂、碳喷镀而制备的复型膜,具有很强的立体感且能耐受电子束轰击和长期保存。折叠缺点冷冻也可造成样品的人为损伤;断裂面多产生在样品结构
冷冻电镜图像处理技术
经过多年的发展,目前冷冻电镜的数据处理部分主要包含了以下的流程(图3):(1) 衬度传递函数的修正(CTF correction)(2) 样品分子投影数据的筛选(particle selection)(3) 二维投影数据的分类和降噪(2D analysis)(4) 三维模型的重构和优化(3D rec
冷冻电镜的技术特点
冷冻电镜(Cryo-microscopy)通常是在普通透射电镜上加装样品冷冻设备,将样品冷却到液氮温度(77K),用于观测蛋白、生物切片等对温度敏感的样品。通过对样品的冷冻,可以降低电子束对样品的损伤,减小样品的形变,从而得到更加真实的样品形貌。
冷冻电镜技术革新
技术革新过去30年来制约冷冻成像应用的瓶颈主要是冷冻成像和图像处理算法。直到近年,两大革命性的技术突破,使冷冻电镜的应用推到了前所未有的高度,两大技术突破分别是:一是直接电子探测器的发明,二是高分辨图像处理算法的改进。前者从硬件上让电镜的图片质量和信噪比有了质的提升,将冷冻电镜带入了一个以电影的形式
什么是冷冻电镜技术
冷冻电镜技术开创者曾摘得2017年诺贝尔化学奖,这种技术结合电子显微镜、超低温冷冻和计算机图像处理手段,可以抓拍生物分子的高清“工作照”。研究人员将样本在零下180摄氏度下冷冻,拍摄了约100万张独立的快照,组合起来后,清晰地看到RNA聚合酶III与DNA结合,拆开DNA双链,准备进行代码转录的情景
什么是冷冻电镜技术
冷冻电镜技术,全称是冷冻电子显微镜技术,是在低温下使用透射电子显微镜观察样品的显微技术这项技术获得了2017年的诺贝尔化学奖,获奖者有三位,分别是瑞士科学家Jacques Dubochet,美国科学家Joachim Frank,英国科学家Richard Henderson。冷冻电镜技术,是一种重要的
冷冻蚀刻表面标记免疫电镜技术
冷冻蚀刻表面标记免疫电镜技术(1)新鲜或固定的细胞进行直接法或间接法免疫标记。(2)PBS(pH7.5)冲洗3min×2,加入1mmol/l MgCl2蒸馏水洗洗3min×3,离心沉集细胞。(3)将细胞团置于小纸板上,入液氮冷却的Freon中,取出入冷冻蚀刻仪中进行断裂操作,再于-100℃蚀刻1mi
三维冷冻电镜技术
三维冷冻电镜技术冷冻电镜经过近三十年的发展,。冷冻电镜技术已成为研究生物大分子结构与功能的强有力的武器。这种方法采用高压快速液氮冷冻方法使样品包埋在玻璃态的水环境中,这种环境接近于生理状态,减少了样品在制备过程中的结构破坏,使我们能够观察到生物大分子在天然状态下的结构。同时冷冻的速度极快,这就有可能
冷冻电镜技术发展历程
冷冻电镜技术发展历程发展历程
冷冻电镜技术发展历程
冷冻电镜技术发展历程发展历程
冷冻蚀刻电镜技术操作方法
操作方法冷冻蚀刻的操作方法按以下步骤进行。1.预处理取新鲜组织块,大小为15~3~5mm,用25%戊二醛固定1~3小时。为防止冰晶形成,用30%甘油生理盐水浸泡8~12小时。2.冷冻断裂是在冷冻条件下使样品变得又硬又脆,用刀劈裂样品,暴露观察面。因为是用刀劈裂的样品,断裂往往发生在细胞被冻结后较
冷冻蚀刻电镜技术的内容介绍
冷冻蚀刻(Freezeetching)技术是从50年代开始发展起来的一种将断裂和复型相结合的制备透射电镜样品技术,故而亦称冷冻断裂(Freezefracture)或冷冻复型(Freezereplica)。
冷冻蚀刻电镜技术的应用介绍
1.冷冻蚀刻表面标记免疫电镜技术(1)新鲜或固定的细胞进行直接法或间接法免疫标记。(2)PBS(pH7.5)冲洗3min×2,加入1mmol/l MgCl2蒸馏水洗洗3min×3,离心沉集细胞。(3)将细胞团置于小纸板上,入液氮冷却的Freon中,取出入冷冻蚀刻仪中进行断裂操作,再于-100℃蚀刻1
免疫电镜相关技术实验—病毒颗粒免疫电镜技术
病毒是极微小的生物体,用电镜观察时,由于其变形、损伤或杂质的存在,以及标本中病毒的数量有限,只靠其形态特点较难确切辨认。为了提高辨认的准确性,可应用特异性抗体,使其与病毒结合,在电镜下可清晰地辨认特异性抗体及其结合的病毒。这种将免疫学检测方法应用于电镜检查的技术就是免疫电镜技术 (Immunoele