斑马鱼——CRISPR高通量基因功能研究新平台

近日,来自美国NIH的研究人员进行了一项研究,他们利用CRISPR-CAS9技术靶向斑马鱼特定DNA序列进行基因功能探索和人类治病基因的发现研究,相关研究成果在线发表在国际学术期刊genome research。 在这项研究中,研究人员发现利用基因编辑技术CRISPR-CAS9进行斑马鱼基因靶向识别以及插入删除特定基因的效率可以达到其他技术的6倍。同时,利用CRISPR-CAS9技术还能够在同一时间对多个基因进行靶向突变,为研究基因功能提供了极大便利。 研究人员指出,斑马鱼是一种常用的实验动物模型,并且人类已经完成对斑马鱼的基因测序,由于斑马鱼有70%的基因与人类同源且斑马鱼的繁殖快,产量大,并且饲养更加经济,因此相比于其他模式动物,斑马鱼更适合进行高通量筛选。 在该项研究中,研究人员为探究利用斑马鱼进行高通量基因编辑的可行性,他们利用CRISPR-CAS9技术对83个斑马鱼基因的162个位点进行了基因编辑,其中有大约......阅读全文

斑马鱼平台助力HSP发病机理研究

遗传性痉挛性截瘫(HSP)又称家族性痉挛性截瘫,是一种神经系统退行性变性疾病。其病理改变主要是脊髓中双侧皮质脊髓束的轴索变性或脱髓鞘,以胸段最重。 临床表现为双下肢肌张力增高,腱反射活跃亢进,病理反射阳性,呈剪刀步态。2018年5月11日,中国国家卫生健康委员会等5部门联合制定了《第一批罕见病目录》

武汉研究斑马鱼揭示器官再生之谜

  身长约4厘米,具暗蓝与银色纵条纹 基因与人类的相似度达87% 心脏能再生 约2000种人类疾病能出现在其身上 胚胎在体外发育,且完全透明 一种经济实惠的实验动物,一对斑马鱼一次可生产300只“鱼宝宝”   “斑马鱼的基因与人类相似度高达87%,人类无法长出第二个心脏,而斑马鱼的心脏却能再生

斑马鱼研究全套装备配置清单

斑马鱼由于养殖方便、繁殖周期短、产卵量大、胚胎体外受精、体外发育、胚体透明等特点,已成为生命科学研究的新宠,是最受重视的脊椎动物发育生物学模式之一。你的实验室在做斑马鱼研究吗?斑马鱼研究需要哪些工具?你知道斑马鱼研究的最强装备吗?服务全球科学家48年历史,WPI为您供全套的斑马鱼研究工具,包括斑马鱼

水生所关于斑马鱼基因捕获与插入突变的研究取得突破

  脊椎动物后基因组时代的主要任务是解读基因的功能,而基因捕获和插入突变是揭示基因功能的重要手段。斑马鱼具有易于饲养、繁育周期短、产卵量大、体外受精与发育等优点,已成为发育和遗传学研究的理想模式动物,但尚缺乏胚胎干细胞和基于胚胎干细胞的基因敲除技术。转座子介导的基因捕获和突变研究为大规模筛选斑马鱼突

应用CRISPRCas9实现斑马鱼组织特异性基因敲除

  近日,来自美国哈佛大学的研究人员在国际学术期刊Development cell发表了他们的最新研究进展,他们利用基于CRISPR-Cas9技术开发的载体系统在斑马鱼上实现了组织特异性基因敲除,这对于以斑马鱼为主要研究工具的科学家们无疑是一个好消息。  斑马鱼具有养殖方便、繁殖周期短、产卵量大、胚

一种快速有效的基因分型斑马鱼的方法(二)

Fig.1. 应用HRMA对p53zy7(p53I166T)和apchu745(apcmcr)进行点突变基因分型。A:p53I166T 错译突变周围的序列。有下划线的为引物序列,星号标注的是SNP位点。野生型产物的Tm值为79.5℃,突变型为80.9℃。B:Melting curves

一种快速有效的基因分型斑马鱼的方法(三)

 Fig.3. 通过高分辨溶解曲线进行逆转录病毒插入突变wdr43hi821a进行基因分型。A:wdr43hi821a的基因组。B:野生型和突变等位基因的DNA序列。下划线标注的是引物序列。野生型的Tm值为73.0℃,突变型的Tm值为81.1℃。C:从wdr43hi821a/+得到的48个晶

一种快速有效的基因分型斑马鱼的方法(一)

 为了促进斑马鱼的高通量的基因分型,我们开发了一种新的技术——用高通量熔解分析(HRMA)区分野生、杂合、纯合突变。这种耗时一个小时的技术不需要进行限制性内切酶酶切和琼脂糖凝胶电泳的操作。此技术生成的熔解图的敏感性高,可以检测不明确的PCR产物。我们可以对斑马鱼的三种类型的突变进行可靠的基因分型,包

水生所发布高质量AB品系斑马鱼参考基因组

  斑马鱼是生命科学、健康科学和环境科学等研究领域的重要模式生物之一。常见的两种实验室斑马鱼品系分别是Tubingen品系和AB品系。其中,AB品系斑马鱼被国内外很多实验室作为研究对象。然而,却缺乏一个高质量的AB品系斑马鱼参考基因组。  由于不同品系斑马鱼来源不同,各品系之间存在着大量基因序列上的

斑马鱼如何长出新的神经元

  研究人员已经发现了使得斑马鱼的大脑能够在其受到创伤性损害之后再生的机制。与哺乳动物不同,这些在淡水中生长的小鲦鱼因为脑部损伤所致的炎症会伴有新神经元的产生。   如今,Nikos Kyritsis及其同事展示,在损伤反应中,斑马鱼脑部的炎症会激活特定的信号传导分子及神经胶质细胞,后者可促进

斑马鱼嗅觉作用主要是左鼻子

斑马鱼嗅觉作用主要是左鼻子   如同人有“左撇子”一样,鱼也有类似“左撇子”的鼻子。   日前,日本名古屋市立大学与国立遗传学研究所的一项新研究发现,斑马鱼发挥嗅觉作用的主要是左鼻子。相关研究论文在线刊登在了近期出版的《自然—神经科学》(Nature Neuroscience)杂志上。  

除了小鼠,斑马鱼也被盯上了-|-PNAS

  植有人类肿瘤细胞(红色)的斑马鱼胚胎,这一模型有望帮助医生快速筛选癌症患者最佳的治疗方案(图片来源:Rita Fior团队)  最新一期《PNAS》在线发表了一篇题为“Single-cell functional and chemosensitive profiling of combinato

斑马鱼胚胎细胞的培养——细胞系

实验材料链酶蛋白酶E用D-PBSA配制1%胰蛋白酶和1mmol L EDTAZEM-2细胞(或等同物)试剂、试剂盒LDF基础培养液LDF原代培养液LDF维持培养液D培养液Holtfreter缓冲液实验步骤鳟鱼胚胎提取物:(a)收集胚胎(受精后 28 天的 Shasta Rainbow 或其他鳟鱼种系

寄生虫感染或破坏斑马鱼实验

  研究人员表示,一种感染实验室斑马鱼的常见寄生虫可能令多年的行为实验结果产生混淆。不过,批评者认为,这个案例仍有待证实。  和小鼠一样,斑马鱼被用在全球的实验室中,以研究从药物疗效到诸如精神分裂症和自闭症等遗传性疾病和障碍的所有事情。由于斑马鱼和人类都具有高度社会性,因此研究人员认为,和啮齿类动物

斑马鱼的胚胎原位杂交试验实录

收集斑马鱼的胚胎,在Holfretor水中培养,到达所需要的发育时期时,用蛋白酶去除卵膜,用4%多聚甲醛固定,在4℃保存,二十四小时后用50%甲醇2%多聚甲醛溶液洗,然后换成甲醇,在-20C 保存,待用(两天和两天以上的胚胎需要用双氧水处理,去除色素。或者使用苯锍脲稀溶液培养,可阻断色素的形成)原位

-Nat-Commun:斑马鱼可用于癫痫药物筛选

  化学药物Clemizole在“Dravet综合症”的一个斑马鱼模型中能有效防止癫痫类发作。在Nature Communications上发表的这一发现确认了一个新方法,后者有可能被用来识别癫痫病的另类疗法。   “Dravet综合症”是一种从婴儿时期开始的严重癫痫,以严重的、自发的和复发的

斑马鱼胚胎细胞的培养——原代培养

实验方法原理收集胚胎,除去绒毛膜,用胰蛋白酶分散胚胎细胞,然后在胚胎成纤维细胞饲养层上培养从斑马鱼囊胚和原肠期胚获得的原代细胞。实验材料链酶蛋白酶E用D-PBSA配制1%胰蛋白酶和1mmol L EDTA胚胎成纤维细胞饲养层人重组白血病抑制因子试剂、试剂盒LDF基础培养液LDF原代培养液LDF维持培

再生医学新进展-人类抗癌基因抑制斑马鱼组织再生

  再生医学或许可以在未来某一天帮助医生进行先天性畸形的修复,帮助病人重新长出受伤的手指,甚至是进行心脏修复。但要实现这一切,就必须考虑如何攻破机体自身的抗癌保护系统。最近,来自美国UCSF的研究人员发现了一个人类基因可能是这一保护系统中一个重要部分,既能阻止癌症发展又会阻断健康组织的再生。  在这

北大、加大等联手探索斑马鱼全基因组突变新技术

来自北京大学生命科学学院、美国国立人类基因组研究所和加州大学生物系的研究人员,最近在利用逆转录病毒插入法引发斑马鱼全基因组范围内基因突变的研究中取得重大进展。文章刊登于7月18日在线版《PNAS》。 研究人员采用其研制的一组技术,用假性逆转录病毒(pseudotyped retroviruses)

国际首例-他们用光指挥斑马鱼的白细胞

未来,如果你生病了,除了吃药外,还有更多简单高效的治疗方式可选择,比如用光照一照身体就能远程遥控白细胞,从而主动调动身体的免疫能力。这并非科幻。我国科学家已实现了在活体上用光将白细胞变成“医学微机器人”,可自主控制白细胞的激活和运动,这在国际上是第一例。7月13日,暨南大学李宝军教授和郑先创教授研究

国际首例-他们用光指挥斑马鱼的白细胞

  未来,如果你生病了,除了吃药外,还有更多简单高效的治疗方式可选择,比如用光照一照身体就能远程遥控白细胞,从而主动调动身体的免疫能力。这并非科幻。我国科学家已实现了在活体上用光将白细胞变成“医学微机器人”,可自主控制白细胞的激活和运动,这在国际上是第一例。7月13日,暨南大学李宝军教授和郑先创教授

《自然》:发现斑马鱼造血干细胞生成机理

为医学界研究白血病疗法提供了新思路   法国科学家日前通过对斑马鱼胚胎进行即时监控,发现了其造血干细胞的生成机理。这一成果为医学界研究白血病疗法提供了新思路。   该研究由法国国家科研中心和巴斯德研究所共同完成。研究人员在最新一期英国《自然》杂志上报告说,他们采用即时成像技术对斑马鱼的胚胎进行了观察

诺奖得主Science解开斑马鱼条纹的秘密

  斑马鱼,一种小的淡水鱼,得名于一种醒目的蓝黄色相间条纹图案。在幼鱼皮肤生长过程中,有三种主要的色素细胞类型——黑色细胞、反光银色细胞和黄色细胞出现,它们多层镶嵌,构成特征性的颜色图案。  众所周知,所有这三种细胞类型必须相互作用才能形成适当的条纹,但是,形成成鱼条纹的色素细胞的胚胎起源,直到现在

从斑马鱼身上竟然获得治疗帕金森的方法

   与哺乳动物相比,成年斑马鱼会使大脑中的神经元再生,但这种能力的程度和变异性尚不清楚。来自Edinburgh大学脑神经科学研究中心的Thomas Becker及其研究团队探寻了各种多巴胺能神经元群体的丧失是否足以触发神经元的功能性再生。 他们的研究结果为未来治疗具有运动异常、震颤等症状的神经系统

《干细胞》:斑马鱼细胞可修复人视网膜

在最新一期的《干细胞》(Stem Cells)杂志上,来自英国的研究人员发现,斑马鱼眼睛中的一类叫做Muller胶质细胞的特殊细胞对对视网膜的再生至关重要,该细胞还有助于视力的恢复。研究人员预言,这种Muller胶质细胞可能用于恢复人类受损视网膜。 已经知道,视网膜损伤是造成失明的主要原因,引起视

淋巴管帮助斑马鱼“培育”早期脑细胞

在大脑发育的胚胎阶段,一些神经元和突触可以正常形成并连接,但另一些不能,导致一些部分和部分被丢弃。这会留下死亡或垂死的细胞,这就需要中枢神经系统雇佣一种清理人员。小胶质细胞接受了这个挑战,“摄取”废物,因此对大脑发育至关重要。然而,科学家们对它们是如何在大脑中繁殖的还缺乏充分的了解。美国圣母大学生物

斑马鱼:一条游上“试药路”的小鱼

  蓝色的世界、嗡嗡作响的机器、不时出现的人影……湖蓝色的塑料鱼缸里,七八条小鱼在水中自由游弋,不时停下来盯着外面的世界。看见人影走近,有的小鱼开始在鱼缸里打转,有的则依旧悠然地游来游去。  这些体长不过5厘米、带有墨蓝色斑纹的斑马鱼并不知道,它们从一出生就已同那些野外的同类们分道扬镳,成为人类医药

基因组学研究成果让斑马鱼研究“快马加鞭”

基因组学研究成果让斑马鱼研究快马加鞭(Genomics: Zebrafish earns its stripes)作者:谢训卫人类发育,生理功能及疾病发生的过程涉及到成千上万的基因和其变异体,但是大部分的基因和其变异体的功能依然是未知的。过去的20年里,斑马鱼逐渐成为研究人类基因功能的重要模式动物。

平生医疗Micro-CT小动物成像在斑马鱼基因突变个体观察...

平生医疗Micro CT小动物成像在斑马鱼基因突变个体观察的应用前言 斑马鱼与哺乳动物基因组和蛋白调控机制有高度同源性,而且个体小、生殖周期短、繁殖能力强、易于饲养、体外受精、胚胎透明且发育迅速等诸多方面的优点,被广泛应用于药物筛选、毒性检测和发育研究等科学领域。由于硬骨鱼和人类在骨骼发育过程中的基

Cell-Res:中国学者用韩春雨基因编辑新技术研究斑马鱼

  2016年,生命科学界的一个热门人物,当属河北科技大学生物科学与工程学院生命科学系副教授韩春雨。在今年的5月份,他作为通讯作者在国际学术期刊《Nature Biotechnology》提出一种新的基因编辑技术——NgAgo-gDNA,向当前最火热的“第三代”基因编辑技术CRISPR-Cas9发起