拉伸二硫化钼晶体造出能隙可变半导体

这张放大1万倍的图片显示,一个电子器件上雕刻出了高低不平的“山峰”和“山谷”,铺在上面的二硫化钼经过拉伸后,形成了一种拥有可变能隙的人工晶体。 近日,美国斯坦福大学一科研团队首次通过拉伸二硫化钼的晶体点阵,“扯”出能隙可以变化的半导体。利用这种半导体,科学家有望制造出能够吸收更多光能的太阳能电池。 很多电子产品都离不开半导体。为了让半导体为人所用,工程师必须精确地知道电子通过晶体点阵时需要耗费多少能量。这种能量计量叫做能隙,它可以帮助科学家决定哪种物质更适合执行某种电子任务。 该科研团队所使用的二硫化钼是一种岩石水晶。这种材料本身很常见,不过斯坦福大学的机械工程师郑晓林(音)和物理学家哈利·马诺哈兰证明,二硫化钼晶体点阵的排列方式赋予了它独特的电子特质。 二硫化钼是具有单层原子结构的物质:一个钼原子连接着两个硫原子,这种三角形晶体点阵不断在水平面上重复,形成纸一样的结构。二硫化钼自然岩石是多个这样的单层结构叠在一起......阅读全文

拉伸二硫化钼晶体造出能隙可变半导体

   这张放大1万倍的图片显示,一个电子器件上雕刻出了高低不平的“山峰”和“山谷”,铺在上面的二硫化钼经过拉伸后,形成了一种拥有可变能隙的人工晶体。  近日,美国斯坦福大学一科研团队首次通过拉伸二硫化钼的晶体点阵,“扯”出能隙可以变化的半导体。利用这种半导体,科学家有望制造出能够吸收更多光能的太阳能

原子晶体的晶体结构

结构特征:空间立体网状结构(如金刚石、晶体硅、二氧化硅等)。原子晶体的结构特点:①由原子直接构成晶体,所有原子间只靠共价键连接成一个整体。②由基本结构单元向空间伸展形成空间网状结构。③破坏共价键需要较高的能量。在原子晶体的晶格结点上排列着中性原子,原子间以坚强的共价键相结合,如单质硅(Si)、金刚石

原子晶体的晶体结构介绍

  结构特征:空间立体网状结构(如金刚石、晶体硅、二氧化硅等)。  原子晶体的结构特点:  ①由原子直接构成晶体,所有原子间只靠共价键连接成一个整体。  ②由基本结构单元向空间伸展形成空间网状结构。  ③破坏共价键需要较高的能量。  在原子晶体的晶格结点上排列着中性原子,原子间以坚强的共价键相结合,

拉伸仪主要结构介绍

  电子式面团拉伸仪主机包括:球形器、搓条器、拉伸机构、数据记录和处理系统,又叫做拉伸仪。拉伸仪是用于表征影响烘焙品质的小麦粉面团的物理特性的一款粮油检测仪器。  下面我们就分别来介绍下每个部件的组成结构:     1.球形器。球形器和搓条器是为面团拉伸做准备工作的。球形器的主要功能是将拉伸仪形成的

晶体的结构特点

晶体(crystal)是由大量微观物质单位(原子、离子、分子等)按一定规则有序排列的结构,因此可以从结构单位的大小来研究判断排列规则和晶体形态 。

晶体和非晶体的结构特性差异

晶体与非晶体之间在一定条件下可以相互转化。例如,把石英晶体熔化并迅速冷却,可以得到石英玻璃。将非晶半导体物质在一定温度下热处理,可以得到相应的晶体。可以说,晶态和非晶态是物质在不同条件下存在的两种不同的固体状态,晶态是热力学稳定态。

晶体和非晶体的微观结构差异

晶体和非晶体所以含有不同的物理性质,主要是由于它的微观结构不同。组成晶体的微粒——原子是对称排列的,形成很规则的几何空间点阵;空间点阵排列成不同的形状,就在宏观上呈现为晶体不同的独特几何形状;组成点阵的各个原子之间,都相互作用着,它们的作用主要是静电力;对每一个原子来说,其他原子对它作用的总效果,使

关于晶体结构晶体的共性介绍

  如果将大量的原子聚集到一起构成固体,那么显然原子会有无限多种不同的排列方式。而在相应于平衡状态下的最低能量状态,则要求原子在固体中有规则地排列。若把原子看作刚性小球,按物理学定律,原子小球应整齐地排列成平面,又由各平面重叠成规则的三维形状的固体。  人们很早就注意一些具有规则几何外形的固体,如岩

能自愈可拉伸的晶体管电路问世

韩国成均馆大学、基础科学研究所(IBS)等机构科学家,开发出一种制造柔性电路的新方法。该方法制造出的电子元件可以拉伸且能自行修复,还能扩展组装成高性能可穿戴设备和可植入设备,有望为监测、诊断和治疗各种疾病开辟全新途径。相关论文发表于新一期《自然·电子学》杂志。近几十年,柔性电子产品的发展极大改变了人

拉伸仪原理和结构详述

  拉伸仪其原理是将通过粉质仪制备好的面团揉搓成短而粗的面条两端固定,在中间部位用钩子向下拉,直至拉断。抗拉伸阻力以曲线的形式自动记录下来,据此分析面团品质和助发剂的影响作用。  拉伸仪由面团揉圆器、面条固定器、面条保湿室、拉伸装置、杠杆系统、自动记录器。恒温箱、计时器、样品秤等组成。  使用拉伸仪

硅的晶体结构

两个面心立方结构相互套构而成,其中一个面心立方结构沿另一个的体对角线平移1/4。

晶体结构测定方法

晶体结构测定方法,crystal structure determination,即利用晶体 X射线衍射可测定晶体结构。但衍射实验只能测得衍射强度(即结构振幅)而测不到相角,这样就不可能直接从强度得到晶体结构数据,而要利用其他方法。

晶体结构测定方法

晶体结构测定方法,crystal structure determination,即利用晶体 X射线衍射可测定晶体结构。但衍射实验只能测得衍射强度(即结构振幅)而测不到相角,这样就不可能直接从强度得到晶体结构数据,而要利用其他方法。

什么是晶体结构?

晶体结构是指晶体以其内部原子、离子、分子在空间作三维周期性的规则排列为其最基本的结构特征。任一晶体总可找到一套与三维周期性对应的基向量及与之相应的晶胞,因此可以将晶体结构看作是由内含相同的具平行六面体形状的晶胞按前、后、左、右、上、下方向彼此相邻“并置”而组成的一个集合。晶体学中对晶体结构的表达可采

透射电子显微镜的应用和发展

①晶体缺陷分析  广义的讲,一切破坏正常点阵周期的结构均称为晶体缺陷,如空位、位错、晶界、析出物等。这些破坏点阵周期性的结构都将导致其所在区域的衍射条件发生变化,使得缺陷所在区域的衍射条件不同于正常区域的衍射条件,从而在荧光屏上显示出相应明暗程度的差别。  ②组织分析  除了各种缺陷可以产生不同的衍

简述晶体结构的信息

  晶体结构即晶体的微观结构,是指晶体中实际质点(原子、离子或分子)的具体排列情况。自然界存在的固态物质可分为晶体和非晶体两大类,固态的金属与合金大都是晶体。晶体与非晶体的最本质差别在于组成晶体的原子、离子、分子等质点是规则排列的(长程序),而非晶体中这些质点除与其最相近外,基本上无规则地堆积在一起

激光晶体的结构和特性

激光晶体所用的基质晶体主要有氧化物和氟化物。作为基质晶体除要求其物理化学性能稳定,易生长出光学均匀性好的大尺寸晶体,且价格便宜,但要考虑它与激活离子间的适应性,如基质阳离子与激活离子的半径、电负性和价态应尽可能接近。此外,还要考虑基质晶场对激活离子光谱的影响。对于某些具有特殊功能的基质晶体,掺入激活

离子晶体的空间结构

对称性1) 旋转和对称轴 n重轴, 360度旋转, 可以重复n次。2) 反映和对称面:晶体中可以找到对称面。3) 反演和对称中心:晶体中可以找到对称中心。晶胞晶胞是晶体的代表, 是晶体中的最小单位, 晶胞可以无隙并置起来, 得到晶体. 晶胞的代表性体现在以下两个方面:一是代表晶体的化学组成;二是代表

非晶体的结构和特性

非晶体是指结构无序或者近程有序而长程无序的物质,组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体,它没有一定规则的外形。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点,所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。玻璃体是典型的非晶体,所以非晶态又称为玻璃态

晶体结构的固定熔点

实验表明:从气态、液态或非晶态过渡到晶体时都要放热,反之,从晶态转变为非晶态、液态或气态时都有要吸热。表明:在相同的热力学条件下,与同种化学成分的气体、液体或非晶体相比,晶体的内能最小。即在相同的热力学条件下,以具有相同化学成分的晶体与非晶体相比,晶体是稳定的,非晶体是不稳定的,后者有自发转变为晶体

如何选择蛋白晶体结构

  在使用殷赋云计算平台的时候,有不少用户对于如何选择蛋白晶体结构存在疑问。本篇就这个话题做一些经验分享。任何标准都有一个适用范围。我们在这里只讨论用于分子对接的蛋白晶体结构的选择原则和方法。   1. 确定蛋白种属   在实验当中,研究人员通常使用动物模型(如小鼠)来研究人源蛋白。这样做有许

如何选择蛋白晶体结构?

在使用殷赋云计算平台的时候,有不少用户对于如何选择蛋白晶体结构存在疑问。本篇就这个话题做一些经验分享。任何标准都有一个适用范围。我们在这里只讨论用于分子对接的蛋白晶体结构的选择原则和方法。1. 确定蛋白种属在实验当中,研究人员通常使用动物模型(如小鼠)来研究人源蛋白。这样做有许多原因,比如:1) 无

遗传学术语点阵分析

中文名称点阵分析英文名称dot-matrix analysis定  义将两条以上核酸或氨基酸序列分别列示于纵横坐标,在同一位置上出现相同符号并形成连线,以揭示序列中重复片段或两条序列同源性的方法。应用学科遗传学(一级学科),基因组学(二级学科)

电子衍射图说明晶体、非晶体和准晶体在结构上的异同

利用电子衍射图说明晶体、非晶体和准晶体在结构上的异同晶体有三个特征:(1)晶体有整齐规则的几何外形;(2)晶体有固定的熔点;(3)晶体有各向异性的特点。固态物质有晶体与非晶态物质(无定形固体)之分,而无定形固体不具有上述特点。组成晶体的结构微粒(分子、原子、离子)在空间有规则地排列在一定的点上,这些

新物质化解晶体和准晶体结构“水火不容”

  北京科技大学新金属材料国家重点实验室教授何战兵与北京大学化学学院教授孙俊良、沈阳金属研究所研究员马秀良、瑞士苏黎世大学教授沃特·斯陶尔合作,在Al-Cr-Fe-Si合金系中发现一种新的固体物质形态。近日,该研究成果发表在晶体学杂志《晶体学报A卷》,论文名为《周期点阵中镶嵌有非周期结构块的准晶相关

电子式面团拉伸仪主要结构介绍

    电子式面团拉伸仪是食品加工企业不可缺少的检测仪器,它是通过拉伸试验测试小麦粉面团流变学特性的专用仪器,在小麦粉质量检测方面得到了广泛的应用。电子式面团拉伸仪主要结构包括:球形器、搓条器、拉伸机构、数据记录和处理系统。下面内容进行详细介绍。    1、球形器:球形器的主要功能是将电子式面团拉伸

晶体结构分析的相关介绍

  晶体学中的一个重要的领域,它研究晶态物质内部在原子尺度下的微观结构。它为固体物理学、材料科学、结构化学、分子生物学、矿物学、医药学等许多学科的基础研究和应用研究提供必不可少的实验资料,使人们有可能从分子、原子以及电子分布的水平上去理解有关物质的行为规律。  按所用试样的不同,晶体结构分析有多晶体

关于晶体结构的基本介绍

  晶体结构是指晶体以其内部原子、离子、分子在空间作三维周期性的规则排列为其最基本的结构特征。任一晶体总可找到一套与三维周期性对应的基向量及与之相应的晶胞,因此可以将晶体结构看作是由内含相同的具平行六面体形状的晶胞按前、后、左、右、上、下方向彼此相邻“并置”而组成的一个集合。晶体学中对晶体结构的表达

简述葡糖激酶的晶体结构

  GK晶体分为大区域和小区域, 大小区域之间通过连接区域连接,两区域间存在一个能与底物结合的可变角。在人体内GK存在三种构象,当葡萄糖浓度较低时,GK处于非活性超开放构象;当体内葡萄糖浓度升高时,GK与葡萄糖结合,处于活性开放/闭合构象。  作为单体变构酶,葡萄糖激酶GK在糖代谢中存在三种构象和两

果胶酶的晶体结构

所有果胶酶结构都包括一个由七到九个平行β-螺旋组成的棱柱形右手圆柱体。产生该结构棱柱形状的三个平行β螺旋被称为PB1、PB2和PB3,PB1和PB2产生反平行的β,PB3与PB2垂直。各种酯酶、水解酶和裂合酶的所有底物结合位点都位于结构上的突出环和PB1之间的中央平行β-螺旋结构的外部裂缝上。