菠萝中找到调控植物光合作用“开关”
福建农林大学3日在此间发布,11月2日,国际权威学术刊物《自然·遗传学》在线发表了该校明瑞光教授团队的研究成果“菠萝基因组与景天酸代谢光合作用的演化”。该项研究在全世界首次破译菠萝基因组的基础上,首次阐明了菠萝中的景天酸光合作用基因是通过改变调控序列演化而来,并且受昼夜节律基因的调控,从而找到景天酸代谢植物的“光合开关”。这是国内破译的首个热带植物基因组。 据明瑞光介绍,景天酸代谢是一种独特的光合作用途径,常见景天酸代谢光合作用植物如仙人掌、火龙果等,其中菠萝为最重要的经济作物。该研究为后续在作物中通过基因改造景天酸代谢光合作用奠定了基础;首次证明了菠萝基因组可作为所有单子叶植物的重要的参考基因组,对包括禾本科粮食作物在内的大量单子叶植物的功能研究和产业发展具有重要的参考意义。 明瑞光表示,景天酸代谢植物最高可节水80%,更能在干旱贫瘠等劣质土地生长。本研究不仅将极大促进全球菠萝品种改良和产业发展,而且通过该领域光合作用......阅读全文
研究揭示植物干细胞调控新机制
近日,中国科学技术大学生命科学学院赵忠课题组研究揭示了植物干细胞调控的新机制,研究结果以Redox regulation of plant stem cell fate为题,发表在EMBO Journal上。 干细胞维持与分化的调控对于动物抑或是对于植物的生长发育而言具有重要意义,一旦干细
新发现:植物生物钟调控因子
为了适应地球自转引起的环境周期性变化,地球上几乎所有的真核生物都进化出了内源计时器——生物钟,它可以维持细胞内近24小时的基因表达节律性以适应环境中光温因子的昼夜动态变化。生物钟参与调控植物体内几乎所有的生长发育和代谢过程,如光周期依赖的开花时间、发育、叶片衰老,以及植物对生物与非生物胁迫的响应
植物转录起始调控机制研究获进展
在国家自然科学基金面上项目和青年项目的资助下,中国科学院华南植物园研究员陈琛团队联合广东省农业科学院研究员刘军、加拿大农业部伦敦研发中心研究员崔玉海在植物转录起始调控机制研究方面取得新进展。相关研究近日发表于《核酸研究》(Nucleic Acids Research)。 转录复合体将DNA转录
植物转录起始调控机制研究获进展
在国家自然科学基金面上项目和青年项目的资助下,中国科学院华南植物园研究员陈琛团队联合广东省农业科学院研究员刘军、加拿大农业部伦敦研发中心研究员崔玉海在植物转录起始调控机制研究方面取得新进展。相关研究近日发表于《核酸研究》(Nucleic Acids Research)。 转录复合体将DNA转录
植物形态建成与基因表达调控的关系
植物形态建成即植物的个体发育,指植物生命所经历的全过程。从受精卵的最初分裂开始,经过种子萌发、营养体形成、生殖体形成、开花、传粉和受精、结实等阶段,直至衰老和死亡。但一般以种子萌发为开始阶段。构成植物个体的细胞和器官也有其自身发端、形成和衰老的发育过程。发育包括生长和分化。生长指植物细胞、组织和器官
植物调控早期种子铁装载的机制分析
2021年6月8日Molecular Plant在线发表了浙江大学郑绍建团队题为Restriction of Iron Loading into Developing Seeds by A YABBY Transcription Factor Safeguards Successful Repr
相分离调控线粒体基因组空间秩序的模型
中国科学院广州生物医药与健康研究院研究员刘兴国团队联合清华大学、南方科技大学、北京大学、香港中文大学等科研人员,研究发现线粒体基因组与其结合蛋白,利用生物分子最基础的自发聚集的相分离性质,调控线粒体类核的组装以及转录的复杂过程,构建了首个相分离调控线粒体基因组结构与功能的模型。相关研究10月28日在
《自然》:美首次对老鼠基因组调控序列测序
美国科学家在7月1日出版的英国《自然》杂志上撰文表示,他们首次详细标示出了老鼠基因组功能序列中一个重要部分——调控序列的详细情况。老鼠是生物医学研究中最广泛使用的哺乳动物模型,因此,最新研究也将有助于我们进一步解读人类基因组。 加州大学圣地亚哥分校路德维格癌症研究所基因调控实验
三篇Nature-Methods:定位基因组的调控序列
科学家们利用染色质对DNase消化和Tn5转座的敏感性,对基因组的调控序列进行定位和解读。 近来越来越多的证据显示,许多遗传学差异并非直接影响基因,而是改变控制基因开/关的调控序列。近期Nature Methods杂志上发表了三篇文章,介绍了在基因组中定位调控序列的新技术,阐述了进行数
美首次对老鼠基因组的调控序列测序
美国科学家在7月1日出版的英国《自然》杂志上撰文表示,他们首次详细标示出了老鼠基因组功能序列中一个重要部分――调控序列的详细情况。老鼠是生物医学研究中最广泛使用的哺乳动物模型,因此,最新研究也将有助于我们进一步解读人类基因组。 加州大学圣地亚哥分校路德维格癌症研究所基因调控实验室主任任兵教
植物基因组“剪刀”-被成功打造-可编辑基因组任意位置
中科院上海植物逆境生物学研究中心朱健康课题组通过模仿和改造微生物中的一种抵御外源侵染的防护机制,成功开发出能对植物基因组进行精确定点修饰的技术,从而使高效植物分子改良性状成为可能。这一适用于植物的CRISPR-Cas技术就像一把剪刀,可以对基因组中任意感兴趣的位置进行编辑,它的成功开发将革命性地改变
上海植物逆境中心建立植物基因组精确定点修饰技术
中科院上海植物逆境生物学研究中心朱健康课题组近日通过模仿和改造微生物中的一种抵御外源侵染的防护机制,成功开发出一种能对植物基因组进行精确定点修饰的技术,从而使高效植物分子改良性状成为可能。这一适用于植物的CRISPR/Cas技术就像一把剪刀可以对基因组任意感兴趣的位置进行编辑,它的成功开发将革命
植物所发现植物细胞器基因组新的演化模式
质体和线粒体是内共生起源的细胞器,在高等植物中有不同的遗传特征,相较于动态复杂的线粒体基因组,质体基因组的结构和序列更保守。在基部维管植物石松类卷柏科植物中,这两种细胞器基因组表现出相似的特征,但是造成二者趋同演化的机制尚不清楚。 中国科学院植物研究所研究员张宪春研究组从事石松类和蕨类植物的
昆明植物所破译稻属植物5个物种全基因组
亚洲栽培稻(一般称为水稻)是世界上最重要的粮食作物之一,是中国第一大粮食作物,养活了80%以上的中国人口。在水稻与其它约23个物种共同组成的稻属植物中,它和7个稻种(普通野生稻、尼瓦拉野生稻、非洲栽培稻、短舌野生稻、展颖野生稻、长雄蕊野生稻和南方野生稻)都是AA基因组类型,这些水稻近缘物种间断分
昆明植物所等在植物开花调控研究中取得新进展
植物响应季节变化的开花时间是通过植物对日照长度变化(光周期)的感知来完成的。在拟南芥中,长日照条件诱导开花启动因子Flowering Locus T(FT)的表达来加速植物开花。光周期条件对FT的激活主要依赖于转录因子CONSTANS(CO)的活性,对CO的转录水平、蛋白质稳定性以及生物钟的调控
植物所发现泛素修饰调控植物类黄酮合成的分子机制
类黄酮是植物界广泛存在的次生代谢产物,具有包括使植物器官和组织着色、吸引昆虫传粉、抵御紫外线伤害等一系列重要的生物学功能。近年来,类黄酮的药用价值和保健功能备受关注。科学家对植物中的类黄酮合成途径在转录水平上的调控研究较为深入,但转录后、翻译及翻译后的修饰机制相关研究较少。在真核细胞中,目标蛋白
植物所在高等植物导管分化调控研究中取得新进展
在进化过程中,导管的出现是陆生高等植物成功的主要原因。导管的分化过程经历了细胞伸长、细胞壁局部加厚和细胞程序化死亡3个阶段。与真菌和动物不同,保守的exocyst分泌复合体的EXO70亚基在高等植物基因组中大量扩增。 中科院植物研究所刘春明组对在分化的导管细胞特异表达的EXO70A1进行了
植物园揭示WRKY蛋白通过赤霉素途径调控植物衰老进程
近日,中国科学院西双版纳热带植物园研究员余迪求团队在Molecular Plant在线发表了题为Arabidopsis WRKY45 interacts with the DELLA protein RGL1 to positively regulate age-triggered leaf s
植物所发现植物幼苗响应和适应强光的调控新机制
异养生长转为自养生长是高等植物一生中非常重要的转变过程之一,光照在该过程中发挥至关重要的作用。若没有光,此过程无法完成;适度光照,则促使植物幼苗进入自养生长,开始光合作用;但是光照过强,反而对植物不利,因为叶绿素合成途径的许多中间物质遇到强光容易产生活性氧,使植物发生光氧化,甚至会导致细胞死亡。
福建农林大学长江学者番木瓜基因组学研究刊登国际期刊
2016年11月28日的,福建农林大学、英国爱丁堡大学、美国迈阿密大学、夏威夷农业研究中心、伊利诺伊大学厄巴纳-香槟分校等处的研究人员,在国际生物学权威期刊《Genome Biology》发表一项重要研究成果,题为“Extremely low nucleotide diversity in the
昆明植物所在光合作用调控机制研究中取得系列进展
自然条件下,植物叶片接受到的光照强度随时在波动,时而光照不足,时而光能过剩。当光强突然增加时,植物叶片吸收的过剩光能容易造成光系统I活性损伤并影响植物生长。根据光合作用理论模型,环式电子传递和水水循环这两种替代电子传递途径都可以保护被子植物的光系统I活性免受波动光强的损伤。然而一直以来,环式电子
版纳植物园揭示壳斗科植物的基因组大小进化
物种的基因组大小是物种形成和多样化中最近处的性状。通过测定物种的基因组大小,有助于了解物种的染色体倍性和基因组进化,为全基因组测序提供基础数据,提高基因组多样性的生物信息学研究的效率。前人对植物基因组大小进化的研究多集中于温带草本类群,并且未与系统发育和地理分布相关联,对热带木本植物的基因组大小
版纳植物园miRNA调控植物氮营养元素代谢研究获进展
miRNAs作为一类负调控的small RNA参与植物的生长发育,逆境响应以及代谢生理等过程。近年来在植物中已经发现了上百个miRNA,其中有20个miRNA家族的功能在不同的植物种里非常保守,而其余miRNA的功能多数还未鉴定。近来的研究表明miRNA直接参与了植物营养元素的代谢
华南植物园关于植物转录起始调控机制的研究获进展
转录复合体将DNA转录为RNA,是遗传信息由细胞核向细胞质转递的基础。由于核小体与基因组的紧密结合,转录复合体需克服核小体障碍进而确保功能基因的表达。染色质重塑复合体(Chromatin Remodeler)被认为在转录过程中发挥了重要作用。这类蛋白复合体能通过水解ATP来调控核小体的组成和分布
植物园揭示锌毒害调控植物根系发育的生理与分子机制
锌(Zn)是动植物体内必需的微量元素,适量的锌促进植物生长、提高作物产量;然而高浓度Zn则对植物有害。中国科学院西双版纳热带植物园园艺植物育种研究组前期研究发现,锌毒害通过调控NO/ROS信号途径,影响了根系构型,但其中详细的生理与分子机制尚不完全清楚。 该研究组研究生张苹、孙亮亮在研究员
植物所发现蛋白质SUMO化修饰调控植物的光形态建成
光形态建成是指植物发育过程中感受到光的存在之后所启动的一系列生物学变化过程。COP1作为一种泛素E3连接酶,在光形态建成的负调控中扮演核心角色。在黑暗下,COP1聚集在细胞核中并介导光形态建成的多个正向调节因子的泛素化修饰及降解;见光后,COP1活性降低,从而保证正常的光形态建成。然而,COP1
华南植物园在植物叶片发育表观遗传调控研究中获进展
组蛋白去乙酰化酶(HDAC)在染色体的结构修饰和基因表达调控中发挥着重要的作用。HDAC通过去乙酰化作用移除核心组蛋白N-末端的乙酰基,增加 DNA与组蛋白之间的引力,使松弛的核小体变得十分紧密,从而抑制基因转录的起始与表达。研究表明,HDAC在植物生长发育过程中发挥重要调控作用。 AS
华南植物园关于植物DNA甲基化的调控研究获进展
DNA甲基化是表观遗传修饰的重要组成部分,可以通过改变染色质的结构、DNA的稳定性以及DNA和蛋白质的结合程度调控基因表达。在植物DNA甲基化的建立和维持过程中,植物特有的RNA聚合酶V(Pol V)通过转录出的非编码RNA招募一系列下游因子以实现对DNA的甲基化。目前,以Pol V为核心的DN
使用离心机提取植物基因组DNA
植物基因组DNA提取使用什么样的离心机做?具体步骤怎么样?植物组织提取基因组DNA 一、材料 幼嫩叶子。 二、设备 移液器,冷冻高速离心机,台式高速离心机,水浴锅,陶瓷研钵,50ml离心管(有盖)及5ml和1.5ml离心管,弯成钩状的小玻棒。(这时选择设备的时候注意选择那种通用性强的,可以一机配多种
现存最原始种子植物苏铁基因组发布
近日,科学家完成苏铁基因组解析工作,发布苏铁完整基因组图谱,这意味着种子植物基因组演化研究中的最后一块拼图已顺利完成。4月18日,《自然-植物》(Nature Plants)以封面文章发表该研究成果。据悉,该研究成果数据公开共享,全球科学家可免费下载使用。苏铁是地球上现存最古老的种子植物,是著名的“