生态中心在水生态系统厌氧氨氧化氮循环研究中取得进展

目前人类活动对氮循环的干扰,已远大于其他元素,极大地加速了地球生态环境的变化,引发严重的氮循环失衡、氮污染加剧、温室气体排放增多等不良效应。据估算,全球只有约40-60%的氮是通过反硝化生成氮气回到大气中。在全球变暖、污染加剧的双重胁迫下,是否存在新型的氮循环过程,值得探究。厌氧氨氧化反应的发现就是一个明例。厌氧氨氧化是在厌氧条件下由厌氧氨氧化菌以亚硝酸盐作为电子受体将氨氮直接氧化为氮气,避免了强效温室气体氧化亚氮的产生,并完成封闭的产氮气循环。 中国科学院生态环境研究中心祝贵兵研究组在前期发现白洋淀苇地-沟壕系统的水陆交错带存在厌氧氨氧化反应热区之后,提出猜想:两相物质的交界面,特别是缺氧-好氧界面,很可能发生着广泛的厌氧氨氧化反应。 首先,祝贵兵研究组与研究员朱永官合作,在微米、厘米的尺度上证明缺氧-好氧界面发生着广泛的厌氧氨氧化反应。采集典型水稻根际和非根际土壤,应用CARD-FISH、qPCR和同位素示踪的方法......阅读全文

厌氧氨氧化与砷还原耦联循环研究获进展

  近日,广东省科学院生态环境与土壤研究所研究员孙蔚旻团队在厌氧氨氧化与砷还原耦联循环研究方面取得新进展。相关研究发表于Geochimica et Cosmochimica Acta。  该研究通过微宇宙培养证明了水稻土中确实存在厌氧氨氧化与砷还原的耦联循环过程(Asammox),hzsB和arrA

生态中心在湿地厌氧氨氧化氮循环研究中取得进展

  长久以来,人们一直认为,氨的氧化只在有氧条件下发生。新近研究发现在缺氧/厌氧条件下,氨也可以由厌氧氨氧化菌以亚硝酸为电子受体直接氧化为氮气,完成封闭的产氮气循环,同时避免温室气体N2O产生。它打破了人们对传统氮循环模式的认识,受到国际社会的广泛关注。   目前厌氧氨氧化在自然界的研究还局限于海

生态中心在水生态系统厌氧氨氧化氮循环研究中取得进展

  目前人类活动对氮循环的干扰,已远大于其他元素,极大地加速了地球生态环境的变化,引发严重的氮循环失衡、氮污染加剧、温室气体排放增多等不良效应。据估算,全球只有约40-60%的氮是通过反硝化生成氮气回到大气中。在全球变暖、污染加剧的双重胁迫下,是否存在新型的氮循环过程,值得探究。厌氧氨氧化反应的发现

关于厌氧氨氧化中有机物绝对浓度对脱氮贡献的新研究

  厌氧氨氧化(Anaerobic ammonium oxidation, anammox)技术已越来越多地应用于实际工业废水的处理。厌氧氨氧化菌是一类生长缓慢、世代周期长的自养脱氮菌群。实际工业废水中不可避免地引入有机污染物,一定浓度的有机物能促进厌氧氨氧化菌与反硝化菌之间的协同脱氮作用,而过多的

EZ1301-硝氮和亚硝氮分析仪在厌氧氨氧化工艺中的应用

当前许多污水处理厂都有污泥消化单元。污泥消化罐会对初沉和二沉污泥进行厌氧处理,并为用户提供源源不断的沼气。但当把消化罐中的污泥排出处理时,就会产生污泥消化液。由于污泥消化液被高度浓缩,富含氨氮,通常这一路废水会回流至污水处理厂的进口处再进行循环处理。 在实际操作中,有时也会将一些其他材料(如:工业污

新型厌氧甲烷氧化细菌

中国科学院亚热带农业生态研究所研究员朱宝利和德国及瑞士的科研人员合作,在前期发现的基础上,基于微生物组学分析和代谢通路重建,从富含碘泉水的山洞内生物被膜(biofilm)宏基因组中,组装了一株新型厌氧甲烷氧化细菌——Candidatus Methylomirabilis iodofontis的基因组

简述脱氮硫杆菌的特性

  脱氮硫杆菌是严格自养菌,只能利用无机碳源(如碳酸根离子、碳酸氢根离子)进行生长代谢。有研究表明,脱氮硫杆菌是通过卡尔文循环途径固定二氧化碳,其胞内含有卡尔文循环的两种关键酶——1,5-二磷酸核酮糖羧化酶和5-磷酸核酮糖激酶。  脱氮硫杆菌能够利用的氮源范围很广,可以是氨盐、硝酸盐、亚硝酸盐以及氨

湿地岸边氮循环反应的研究进展

  湿地岸边带作为连接内陆水体与陆地生态系统的交界面,不仅是氮循环反应的“热区”,亦是温室气体——氧化亚氮的高释放区。前期大量研究表明湿地岸边带系统能够有效拦截陆源污染和净化水体,但其微观机理仍不清楚。  中国科学院生态环境研究中心祝贵兵研究组通过构建针对各氮循环反应微生物功能基因的高通量测序分析、

研究新发现厌氧氨氧化菌或可制造太空燃料

  据媒体报道,随着科技的发展,医学科技也在不断的进步,上个世纪90年代,科学家首次发现厌氧氨氧化菌,但直到现在科学家才揭开它们的神秘面纱,荷兰科学家研究发现,利用这种厌氧氨氧化菌可以制造出太空燃料。  研究人员称,通过一系列的实验验证,证实了厌氧氨氧化菌的一种特殊能力,我们可以将隔离生成联氨物质的

氨氮及危害,五种方法去除废水中高氨氮

氨氮氨氮是指水中以游离氨(NH3)和铵离子(NH4+)形式存在的氮。 动物性有机物的含氮量一般较植物性有机物为高。同时,人畜粪便中含氮有机物很不稳定,容易分解成氨。因此,水中氨氮含量增高时指以氨或铵离子形式存在的化合氮。自然地表水体和地下水体中主要以硝酸盐氮(NO3)为主,以游离氨(NH3)和铵离子

高浓度氨氮废水处理方法之新型生物脱氮法

  近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。  一、短程硝化反硝化  生物硝化反硝化是应用zui广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝

探讨废水中氨氮的主要去除方法之生物法

  近20年来,对氨氮污水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。图片来源于网络  生物法  1.生物法机理——生物硝化和反硝化机理  在污水

污水中氨氮的主要去除方法

近20 年来, 对氨氮污水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,目前氨氮处理实用性较好国内运用最多的技术为:生物脱氮法、氨吹脱汽提法、折点氯化法、化学沉淀法、离子交换法、液膜法、土壤灌溉法等。一、生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,

含氮化合物及其测定的环境意义

(1)氮的分类和循环作为地球大气中的主要成分,氮在所有的动、植物生命活动中扮演着重要的角色。氮在环境中有多种氧化态,且各种氧化态之间的转化可以由生物来完成。在不同的好氧或是厌氧条件下,微生物可以将氮或者氧化为高价态,或者还原为低价态。单纯从化学的角度来看,氮有七种价态: -Ⅲ      0     

厌氧消化过程氨抑制研究进展

着厌氧消化理论研究的不断深入,厌氧消化工艺的研发和应用取得了迅速的发展,但处理效率低和!运行稳定性差是厌氧消化中普遍存在的问题,其中氨积累引发氨抑制是主要原因之一。文章简述了厌氧消化过程中氨抑制产生的机理及氨抑制的主要影响因素,介绍了氨抑制过程中微生物变化规律研究现状,总结了消除和缓解氨抑制的方法,

微动力地埋式生活污水处理设施

生物法1.生物法机理——生物硝化和反硝化机理在污水的生物脱氮处理过程中,首先在好氧条件下,通过好氧硝化菌的作用,将污水中的氨氮氧化为亚硝酸盐或硝酸盐;然后在缺氧条件下,利用反硝化菌(脱氮菌)将亚硝酸盐和硝酸盐还原为氮气而从污水中逸出。因而,污水的生物脱氮包括硝化和反硝化两个阶段。硝化反应是将氨氮转化

氨氮、硝酸盐氮、亚硝酸盐氮的危害

氨氮、硝酸盐氮、亚硝酸盐氮的来源 (1) 、生活污水中含氮有机物受微生物作用的分解产物,以及农田排水。城市生活污水中的食品残渣等含氮有机物在微生物的分解作用下产生氨氮, 还有农作物生长过程中以及氮肥的使用也会产生氨氮, 并随着污水排入城市的污水处理厂或直接排入水体中。(2)氨和亚硝酸盐可以互相转化水

什么是总氮、氨氮、硝态氮、凯氏氮?

  1、氮元素的关系  进入水体中的氮主要有无机氮和有机氮之分。无机氮包括氨态氮(简称氨氮)和硝态氮。  氨氮包括游离氨态氮NH3-N和铵盐态氮NH4+-N;  硝态氮包括硝酸盐氮NO3--N和亚硝酸盐氮NO2--N;  有机氮主要有尿素、氨基酸、蛋白质、核酸、尿酸、脂肪胺、有机碱、氨基糖等含氮有机

有机物浓度对厌氧氨氧化工程应用过程的影响

  近年来,厌氧氨氧化(Anaerobic ammonium oxidation, anammox)技术已越来越多地应用于实际工业废水的处理。厌氧氨氧化菌是一类生长缓慢、世代周期长的自养脱氮菌群。实际工业废水中不可避免地引入有机污染物,一定浓度的有机物能促进厌氧氨氧化菌与反硝化菌之间的协同脱氮作用,

研究揭示好氧甲烷氧化菌的厌氧生存机制

原文地址:http://news.sciencenet.cn/htmlnews/2023/3/496778.shtm

厌氧芽胞梭菌厌氧培养实验_厌氧袋培养法

实验步骤1.  将已接种细菌的血平板以及产气管,指示剂,催化剂放入塑料袋内,排出袋中气体,卷叠好袋口,并用大铁夹将塑料袋夹紧密,以防漏气。2.  折断产气管,管内发生反应,产生CO2和H2。CO2供细菌生长需要,能促使许多厌氧菌生长,钯催化剂可催化H2和袋内的O2 生成H2O,从而耗尽袋内的O2,待

厌氧芽胞梭菌厌氧培养

用灭菌接种环取破伤风梭菌肉渣培养物,接种到肉渣培养基中。置于37 ℃温箱培养48~72小时后,液体轻度混浊,肉渣部分被消化微变黑,稍有臭味。

缺氧、厌氧、好氧

  厌氧生物处理是在厌氧条件下,形成了厌氧微生物所需要的营养条件和环境条件,利用这类微生物分解废水中的有机物并产生甲烷和二氧化碳的过程。  高分子有机物的厌氧降解过程可以被分为四个阶段:水解阶段、发酵(或酸化)阶段、产乙酸阶段和产甲烷阶段。  (1)水解阶段 水解可定义为复杂的非溶解性的聚合物被转化

厌氧培养

  可利用厌氧产气袋法进行厌氧培养。规格2.5L的产气袋只能将2.5L容积内的氧气完全吸收,转化成二氧化碳,同理,3,5L的产气袋能吸收3.5L容积的氧气。微需要产气袋和二氧化碳产气袋亦是如此,为达到相应的氧气浓度和二氧化碳浓度,不仅容积要固定,放置的培养物数量也基本要装满,在出厂前都根据计算设定好

厌氧消化

  有机物质被厌氧菌在厌氧条件下分解产生甲烷和二氧化碳的过程,厌氧是在空气缺乏的条件下从有机物中移出而生成CO2的。无论是酸性发酵,还是沼气发酵,参与生化反应的氧都是来自于水、有机物、硝酸盐或被分解的亚硝酸盐。  厌氧消化的优点是有机质经消化产生了能源,残余物可作肥料。厌氧消化开始用于废物处理等多个

污水处理技术之Anammox厌氧氨氧化+MBR膜生物反应器

对于Anammox厌氧氨氧化菌在污水脱氮方面的优点,IWA公众号的不少文章都有所提及。但是,厌氧氨氧化菌的生长速度慢(世代倍增时间一般为15-30天),如何实现厌氧氨氧化的快速启动,使厌氧氨氧化菌快速富集并保留在反应器中是系统能否成功运行的关键因素之一。MBR膜生物反应器在HRT和SRT的分离上有天

污水生物处理系统稳定运行实现技术突破

  9月29日,记者从海南大学获悉,该校环境科学与工程学院马斌团队通过人为设置非致死的高底物环境,探索增强细菌群落耐受性的方法。相关研究成果发表在国际学术期刊《自然·通讯》上。  当前,全球快速城市化给水环境带来了前所未有的负担,需要寻找到更有效的废水处理策略,以解决不断上升的污染水平,同时最大限度

总氮君污水厂的总氮的去除(上三)

由于市政污水厂绝大部分采用的是活性污泥的生物处理法,我们来看看在市政污水厂中生物脱氮的基本原理,脱氮过程一般包括氨化、硝化和反硝化三个过程。① 氨化:污水中的含氮有机物,在生物处理过程中被好氧或厌氧异养型微生物氧化分解为氨氮的过程;② 硝化:污水中的氨氮在硝化菌(好氧自养型微生物)的作用下被转化为N

城镇污水处理厂总氮去除工艺研究进展

前言   近年来,随着我国经济社会的快速发展,城镇规模的日益扩大,各地区污水排放量都在不断的增加,水资源的污染也日趋严重,且《长江中下游流域水污染防治规划(2011-2015年)》明确要求到2015年底所有城镇污水处理厂应达到《城镇污水厂污染物排放标准》(GB18918-2002)一级B以上排放标准

植物乳杆菌的基本介绍

  植物乳杆菌是乳酸菌的一种,最适生长温度为30~35,厌氧或兼性厌氧,菌种为直或弯的杆状,单个、有时成对或成链状,最适pH 6. 5左右,属于同型发酵乳酸菌。此菌与其他乳酸菌的区别在于此菌的活菌数比较高,能大量的产酸,使水中的PH值稳定不升高,而且其产出的酸性物质能降解重金属;由于此菌是厌氧细菌(