研究人员用原子力显微镜在原子水平“看”键的断裂和形成
化学键的打开和形成是发生化学反应的必经过程,科学家们也向往能够直接“看到”这些过程。 最近,以苏黎世IBM研究中心科学家Leo Gross为首的研究团队使用扫描隧道显微镜(scanning tunneling microscopy,STM)触发一个单分子反应,并用原子力显微镜(atomic force microscopy,AFM)对该分子进行原子水平上的成像,包括形成自由基中间体和最终产品时的细节(Reversible Bergman cyclization by atomic manipulation. Nature Chemistry, 2016, DOI:10.1038/nchem.2438)。 STM驱动的反应(下)及其AFM成像(上)。图片来源:Nature Chemistry 该团队研究的是一种逆向的Bergman环化反应。Bergman环化反应发现于1972年,烯二炔(enediyne)形成双自由基中间......阅读全文
从原子水平检测硅材料的技术出炉
有望研发出新型硅结构材料 据美国物理学家组织网报道,美北卡罗莱纳州立大学科学家们研究出一种先进的方法,能从原子尺度分析出硅材料里的组合成分。这种技术增进了人们对原子结合形式的理解和控制,有望改善硅材料的结构性能,开发高效微晶片和新型设备。相关研究发表在美国《国家科学院院刊》(PNAS)网
冷冻CO针头STM技术实现观察分子中原子和化学键准确位置
华威大学和卡迪夫大学的研究人员使用一根针尖带有单一一氧化碳分子并冷冻至零下266摄氏度的的超薄、尖锐针头,识别并绘制了材料表面上每个分子键的位置 · 这项扫描隧道显微(STM)技术的精确度非常高,以至于可以在原子水平上测量由泡利不相容原理引起的电阻变异,而这不仅可以区分卤键和氢键,还可以精确显
化学键合固定相
化学键合固定相 :化学键合固定相是利用化学反应将有机分子键合到载体表面上,形成均一、牢固的单分子薄层而构成各种性能的固定相。
原子力显微镜等助力从突触水平“看清”大脑
在多个层次上解析脑网络系统的联结方式与规则,绘制大脑线路图,并对其进行研究和模拟,是近年来神经科学和计算科学一个重要的交叉融合点。日前,记者从中科院自动化所获悉,科研人员已经建立国内最高通量的纳米级突触水平神经大数据重建与分析平台。 神经元是大脑的最基本单元,而突触是神经元之间在功能上发生联系
研究人员用原子力显微镜在原子水平“看”键的断裂和形成
化学键的打开和形成是发生化学反应的必经过程,科学家们也向往能够直接“看到”这些过程。 最近,以苏黎世IBM研究中心科学家Leo Gross为首的研究团队使用扫描隧道显微镜(scanning tunneling microscopy,STM)触发一个单分子反应,并用原子力显微镜(atomic f
化学键合固定相的特点
化学键合固定相的特点 :固定相不易流失,柱的稳定性和寿命较高;能耐受各种溶剂,可用于梯度洗脱;表面较为均一。没有液坑,传质快,柱效高;能键合不同基团以改变其选择性。例如,键合氰基、氨基等极性集团用于正相色谱法,键合离子交换基团用于离子色谱法,键合C2,C4,C6,C8,C18,C16,C18,C22
亲脂性的化学键结基本介绍
亲脂性是指一个化合物融解在脂肪、油、脂质或非极性溶剂的能力。这些非极性溶剂本身就亲脂,所以这告诉我们"喜欢什么就溶于什么"。因此亲脂性的物质就会溶在亲脂的溶剂,亲水性的物质就会溶于亲水性的溶剂内。 当我们以伦敦力的角度来看,亲脂性、疏水性和非极性可以互相替换,然而,亲脂性和疏水性并不是同义字,
使晶面平坦度达原子水平的新型研磨技术出现了
东京大学研究人员通过一边浇水一边用丙烯酸板研磨硅基板,成功达到了原子水平的平坦度。整个过程不使用药液和抛光磨粒,硅基板表面粗糙度实现仅0.037纳米,加工成本仅水费和电费。相关论文发表在《Applied Physics Letters》上。 其工作原理是,将研磨对象推压于边泼水边旋转的丙烯板,
Nature:从原子水平上解析噬菌体感染细菌的分子机理
细菌噬菌体是感染细菌的一种病毒,近日,来自瑞士洛桑联邦理工学院(EPFL)的研究人员利用先进的研究工具描述了一百万个原子“尾部”结构,细菌噬菌体可以利用尾部结构来突破细胞的表面进入到细胞内部,该研究对于理解细菌噬菌体感染细菌的机制,以及后期应用于新型细菌性疾病疗法的开发提供了新的线索和希望,相关
别出心裁:在原子水平上对材料进行工程设计
背景介绍 自从纳米技术的概念提出以来,设备小型化一直是技术发展的驱动力。纳米制造技术的飞速发展推动了摩尔定律的发展,摩尔定律呈指数增长,导致现在半导体微处理器的计算能力成倍增长,而这些微处理器现在已成为大规模仿真和人工智能的基础。在科学的好奇心和技术的渴求的推动下,电子设备的小型化无疑会持续发
忍不住抱走的超萌化学键~~
小编近日在网上看到一组超萌化学键组图,立刻分享给大家,希望能有绘画高手补充其他萌萌哒的化学键!离子键共价键金属键 网友评论:
化学键合相色谱法
一. 原理“化学键合相色谱法”——采用化学键合相作固定相的液相色谱法。化学键合相是利用化学反应通过共价键将有机分子键合在载体(硅胶)表面,形成均一、牢固的单分子薄层而构成的固定相。其分离机理为吸附和分配两种机理兼有。对多数键合相来说,以分配机理为主。通常,化学键合相的载体是硅胶,硅胶表面有硅醇基,
化学键合相色谱法
一. 原理 “化学键合相色谱法”——采用化学键合相作固定相的液相色谱法。 化学键合相是利用化学反应通过共价键将有机分子键合在载体(硅胶)表面,形成均一、牢固的单分子薄层而构成的固定相。其分离机理为吸附和分配两种机理兼有。对多数键合相来说,以分配机理为主。 通常,化学键合相
化学键合固定相基本理论
化学键合固定相的基本理论将有机官能团通过化学反应共价键合到硅胶表面的游离羟基上而形成的固定相称为化学键合相。这类固定相的突出特点是耐溶剂冲洗,并且可以通过改变键合相有机官能团的类型来改变分离的选择性。1.键合相的性质目前,化学键合相广泛采用微粒多孔硅胶为基体,用烷烃二甲基氯硅烷或烷氧基硅烷与硅胶表面
新型显微镜可直接观察原子水平线粒体和核糖体
显微镜(microscope)作为一种借助物理方法产生物体放大影像的仪器用于科学研究,至今已经有数百年历史,而且已经成为一种极为重要的科学仪器, 广泛地用于生物学、化学、物理学、冶金学、酿造等各种科研活动,对人类的发展做出了巨大而卓越的贡献。 据美国2014年3月2
在单原子水平上解密化学有序/无序态同材料性质的关系
完美的晶体在自然界是不存在的。现实中的材料往往存在缺陷,和化学有序/无序态,例如晶界,位错,界面,表面重构以及点缺陷。这些缺陷严重影响着材料的性质和功能。尽管材料的定量表征方法被快速建立,但精确处理有序/无序排列的三维(3D)原子和晶体缺陷对材料性质的影响仍是一大挑战。与此同时,量子力学计算方法
化学键合相色谱仪分类
化学键合相色谱仪分类有多种。1、按分离目的可分:化学键合相实验室色谱仪和化学键合相工业色谱仪。2、按功能可分:化学键合相分析色谱仪和化学键合相制备色谱仪。3、按分离规模可分:小型化学键合相色谱仪和大型化学键合相色谱仪。4、按固定相物理状态可分:化学键合相气液色谱仪和化学键合相液液色谱仪。5、按用途可
化学键合相色谱仪简介
化学键合相色谱仪是在液液分配色谱仪基础上发展起来的。液液分配色谱仪虽有较好的分离效果,但由于固定液是以机械的方法吸附在载体表面上,固定液流失严重,使柱效和分离选择性下降,柱使用寿命短。流失的固定液会给基线带来大的噪声而降低检测器的灵敏度,同时也会污染分离后的组分。为了解决这个问题,将各种不同的有机基
化学键合相色谱仪简介
化学键合相色谱仪是在液液分配色谱仪基础上发展起来的。液液分配色谱仪虽有较好的分离效果,但由于固定液是以机械的方法吸附在载体表面上,固定液流失严重,使柱效和分离选择性下降,柱使用寿命短。流失的固定液会给基线带来大的噪声而降低检测器的灵敏度,同时也会污染分离后的组分。为了解决这个问题,将各种不同的有机基
化学键能数据库iBonD在京发布
3月15日,清华大学基础分子科学中心和南开大学元素有机化学国家重点实验室程津培教授研究组在京发布了国际上首个涵盖全面、数据可靠、使用快捷方便、专业权威的网络版化学键能数据库iBonD1.0版。 键能是化学领域中最基础参数之一,因该参数直接反映出化合物的稳定性以及判断化学反应是否能发生,从而成为
JACS:研究发现金属间最短化学键
美国化学家近日创造了一项新的世界纪录,他们发现了迄今为止金属间最短的化学键,这一化学键产生于两个铬原子之间。相关论文发表于《美国化学学会会志》(JACS)上。 图片说明:一种新分子中两个铬原子间的化学键长度创造了最短纪录。(图片来源:Klaus Theopold) 这一最短距离究竟是多少
化学键合固定相色谱仪类型
化学键合固定相色谱仪类型有多种。1、按分离目的可分:实验室化学键合固定相色谱仪和工业化学键合固定相色谱仪。2、按分离原理可分:化学键合固定相分配色谱仪和离子化学键合固定相色谱仪。3、按流动相物理状态可分:化学键合固定相气相色谱仪和化学键合固定相液相色谱仪。4、按固定相和流动相的极性大小可分:正相化学
配位化合物的化学键理论
配位化合物的化学键理论,主要研究中心原子与配体之间结合力的本性,用以说明配合物的物理及化学性质,如磁性、稳定性、反应性、配位数与几何构型等。配合物的理论起始于静电理论。而后西季威克与鲍林提出配位共价模型,也就是应用配合物中的价键理论,统治了这一领域二十余年,可以较好地解释配位数、几何构型、磁性等一些
什么情况下就会破坏化学键
首先判断是反应中化学键被破坏还是物理变化中化学键被破坏.如果是化学反应,则需要根据具体的反应类型和反应中物质的变化来判断什么化学键被破坏.不过一般的话,离子化合物是离子键被破坏,至于其中可能含有的共价键则另外讨论.而共价化合物则是共价键被破坏,至于是什么共价键被破坏则需要具体看反应.如果是物理变化,
化学键合相色谱仪的用途
由于化学键合相色谱仪的键合固定相非常稳定,在使用中不易流失。由于键合到载体表面的官能团可以是各种极性的,适用于各种样品的分离分析。目前化学键合相色谱仪已获得了日益广泛的应用,在液相色谱中占有极其重要的地位。一、正相键合相色谱的用途:正相键合相色谱多用于分离各类极性化合物,如染料、甾体激素、多巴胺、氨
化学键合相色谱仪的特点
化学键合相色谱仪是采用化学键合相作固定相的液相色谱仪。一、适合几乎所有类型化合物的分离。1、通过控制化学键合反应,可以把不同的有机基团键合到硅胶表面上,大大提高了分离的选择性。2、可以通过改变流动相的组成分离非极性、极性和离子型化合物。二、键合到载体上的基团不易被剪切而流失。1、解决了由于固定液流失
化学键合相色谱仪的优点
化学键合相色谱仪的优点:一、适用于几乎所有类型的化合物的分离。一方面通过控制化学键合反应,可以把不同的有机基团键合到硅胶表面上,从而大大提高了分离的选择性。另一方面可以通过改变流动相的组成来有效地分离非极性、极性和离子型化合物。二、由于键合到载体上的基团不易被剪切而流失,这不仅解决了由于固定液流失所
化学键合相色谱仪的特点
化学键合相色谱仪是采用化学键合相作固定相的液相色谱仪。一、适合几乎所有类型化合物的分离。 1、通过控制化学键合反应,可以把不同的有机基团键合到硅胶表面上,大大提高了分离的选择性。 2、可以通过改变流动相的组成分离非极性、极性和离子型化合物。二、键合到载体上的基团不易被剪切而流失。 1、解决了由
何谓液相色谱仪化学键合固定相?
液相色谱仪化学键合固定相是利用化学反应将固定液的官能团键合在色谱柱载体表面形成的固定相。具有以下特点: 1、固定相表面没有液坑,比一般液体固定相传质快的多。 2、无固定相流失,增加了色谱柱的稳定性和寿命。 3、可以键合不同的官能团,能灵活地改变选择性。 4、可应用于多种色谱类型和样品的分析。
液相色谱仪化学键合相解析
液相色谱仪化学键合相有Si-O-C键型、Si-N或Si-C键型、Si-O-Si-C键型等。一、Si-O-C键型:酯化反应是最早用于制备键合相的反应。用硅羟基Si-OH和醇类R-OH通过酯化反应制得的单分子层硅酸酯易水解,醇解,热稳定性差,现已不大使用。二、Si-N或Si-C键型:比Si-O-C键型的