表观遗传学研究获重大突破

同济大学高绍荣团队首次从全基因组水平上揭示了小鼠植入前胚胎发育过程中的组蛋白H3K4me3和HK27me3修饰建立过程,并发现宽的H3K4me3修饰在植入前胚胎发育过程中对基因表达发挥重要调控作用。相关成果9月15日在线发表于《自然》。 高绍荣研究组利用极少量的细胞检测了小鼠植入前胚胎发育各个时期的组蛋白H3K4me3和H3K27me3修饰变化情况,这两个修饰分别对应基因的激活和沉默。 研究人员发现,组蛋白H3K4me3和H3K27me3修饰的建立规律明显不同,H3K4me3修饰的建立更迅速,并且倾向于建立在CpG含量较高且DNA甲基化水平较低的启动子区域,而H3K27me3修饰的建立比较缓慢,并且倾向于建立在CpG含量较低的启动子区域。 此次最重要的发现是看到,虽然H3K4me3修饰在2-细胞时期之后很少出现完全的建立和去除,但H3K4me3信号的宽度却在不断变化,并且在早期胚胎的基因组中存在大量宽的(>5kb......阅读全文

科学家揭示克隆胚胎发育异常表观遗传机制

  同济大学教授高绍荣和张勇课题组通过对不同发育命运体细胞克隆胚胎进行全基因组DNA甲基化分析,揭示了异常的DNA再甲基化是导致克隆胚胎着床后发育异常的关键因素。该研究近日发表于《细胞—干细胞》。  虽然体细胞克隆在多种动物上已获得成功,但克隆胚胎中DNA甲基化的重编程过程及其对克隆效率的影响在很大

科学家揭示克隆胚胎发育异常表观遗传机制

  同济大学教授高绍荣和张勇课题组通过对不同发育命运体细胞克隆胚胎进行全基因组DNA甲基化分析,揭示了异常的DNA再甲基化是导致克隆胚胎着床后发育异常的关键因素。该研究近日发表于《细胞—干细胞》。  虽然体细胞克隆在多种动物上已获得成功,但克隆胚胎中DNA甲基化的重编程过程及其对克隆效率的影响在很大

表观遗传之组蛋白修饰—组蛋白乙酰化

大家好,我又来啦~~今天给大家放送的是表观遗传之组蛋白修饰相关的内容噢,组蛋白修饰也是一个比较复杂的过程,今天呢,我们就给大家讲讲组蛋白乙酰化及相关的产品。 一 组蛋白修饰 真核生物染色质的基本结构单位是核小体,它由约 146 bp DNA 缠绕组蛋白八聚体组成,其中组蛋白八聚体包含 2 (H2

揭示哺乳动物早期胚胎发育表观遗传的进化调控规律

  在生命起始的时候,高度特化的精子和卵子结合形成全能性的受精卵。在这一过程中,表观遗传信息发生了广泛而剧烈的重编程。同时,一些表观遗传信息如基因印记会被选择性的保留下来。由于哺乳动物配子和早期胚胎材料的稀缺,关于表观遗传信息在配子向胚胎转变(parental-to-embryonic transi

揭示胚胎发育过程中关键信号通路的表观遗传调控机理

  哺乳动物基因组DNA中的5-甲基胞嘧啶(5mC)是一种稳定存在的表观遗传修饰,通过DNA甲基转移酶(DNMTs)催化产生。近年来研究发现,TET双加氧酶家族蛋白可以氧化5mC,从而介导DNA发生去甲基化。虽然DNA甲基化在哺乳动物基因组印记和X染色体失活等过程中具有非常重要的作用,但是DNA甲基

动物所发现组蛋白伴侣对脑发育的表观遗传调控新机制

  近年来,越来越多的研究发现,表观遗传调控对于许多生理过程都发挥着非常重要的作用。HIRA作为组蛋白的分子伴侣,在表观调控中具有不可替代的位置,HIRA与原肠胚的发育、受精、神经转录及可塑性都有着非常密切的关系,并且当它被敲除后会出现胚胎致死的现象。但HIRA在脑发育过程中是否发挥作用一直是没有解

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

遗传发育所在小麦胚发育的表观组调控方面取得进展

  胚胎发育是生物生命周期中至关重要的环节之一,在动植物中存在广泛的保守性和特异性。动物胚胎发育过程中存在基因组范围内表观遗传修饰的重编程事件,并影响了胚胎发育的进程。胚胎发育过程也适用于探究表观修饰及转录调控对细胞命运决定的贡献。然而,人们对于植物胚发育过程中转录及表观修饰层面变化的了解要滞后于动

新发现揭示亲代组蛋白遗传影响细胞分化命运

  人体大概有200多种细胞类型,这些细胞都是从同一个受精卵发育而来,它们拥有几乎完全一样的基因组信息,但其形态和功能千差万别。近几十年的研究发现,表观基因组图谱对于细胞身份的决定至关重要。但仍有一个主要问题尚未解决:细胞分裂过程种,这些表观基因组信息,是如何遗传下去的从而维持细胞的命运?  9月4

黄国宁:表观遗传学“照亮”胚胎筛选“暗箱”

原文地址:http://news.sciencenet.cn/htmlnews/2024/3/519073.shtm当辅助生殖技术照亮大量不孕不育患者“迷途之路”时,真实的研究数据依然提醒人们生殖医学的道路漫长。据2021年《柳叶刀》相关研究统计,当前全球辅助生殖(试管婴儿)的活产率不足30%。如何

科学家揭示亲代组蛋白遗传影响细胞分化命运

原文地址:http://news.sciencenet.cn/htmlnews/2023/9/507890.shtm人体大概有200多种细胞类型,这些细胞都是从同一个受精卵发育而来,它们拥有几乎完全一样的基因组信息,但其形态和功能千差万别。近几十年的研究发现,表观基因组图谱对于细胞身份的决定至关重要

研究揭示组蛋白变体调控早期胚胎发育新机制

  近日,华中农业大学动物科学技术学院、动物医学院苗义良团队研究成果在Advanced Science在线发表。研究针对鼠猪早期胚胎系统地揭示了H2A.Z在早期胚胎发育过程中的动态分布规律,并首次证实了H2A.Z的分级富集参与调节哺乳动物早期胚胎的基因表达和组蛋白修饰状态。  在哺乳动物早期胚胎发育

遗传发育所曹晓风团队开辟水稻表观遗传研究新方向

  DNA测序技术发明之后,科学家们认为自己可以通过DNA全基因组测序解析生命的全部密码。渐渐的,他们发现有些重要信息并不编码于DNA序列里面,即便基因序列没有发生变化,生物体的表型也可以改变。这种研究被称为“表观遗传学”,继传统遗传学之后,表观遗传学如火如荼地发展起来了。曹晓风供图  中科院院士、

男性不育重大突破!精子缺陷的表观基因组或是关键原因

每8对夫妇中就有1对存在生育困难的问题,其中近四分之一的原因都是由不明原因的男性不育所引起的,在过去10年里,研究人员发现,男性不育与缺陷的精子在发育过程中无法从DNA中“驱逐”组蛋白有关,而其背后的机制以及在精子DNA中所发生的未知,目前研究人员并不清楚。图片来源:Bobjgalindo/Wiki

研究发现胚胎可接收亲本特有的信息层

  最近,旧金山州立大学的研究人员发现,解释一个新胚胎遗传密码的信息,根据它来自于父亲还是母亲而有所不同。  研究人员在2014年10月9日《PLOS Genetics》发表的一篇文章中,详细阐述了精子和卵子传递成功繁殖所需要的信息的多层过程。尽管一层是被转移的DNA密码,这项新研究发现了不是由DN

清华团队Nature、Cell子刊连发多项表观遗传学成果

  表观遗传学修饰可以在不改变DNA序列的情况下调控基因的活性,对于人类发育和人类疾病有深远的意义。组蛋白修饰是一种重要的表观遗传学修饰,包括甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化等等。  组蛋白修饰可以调控许多关键的细胞过程。不过,人们一直不清楚组蛋白的这些标签是否能从哺乳动物生殖细胞传

Nature子刊:表观遗传学调控与小脑发育

  渥太华大学的研究团队在Nature Communications杂志上发表文章指出,Snf2h基因能够通过控制染色质的组成形式,对小脑发育产生特殊的影响。小脑是大脑的重要控制中心,与平衡能力、精细运动和复杂的肢体运动有关。  运动员和艺术家们的非凡成就取决于他们的小脑,同样小脑对我们的日常生活也

简述单倍体胚胎干细胞的表观遗传学特性

  单倍体胚胎干细胞的表观遗传学特性—在Gu等对于Tet3 DNA加双氧酶在卵母细胞表观遗传重编程的作用的研究中,发现了一些单倍体细胞的表观遗传学特性。即在5-羟甲基胞嘧啶(5-hydroxymethyl -cytosine, 5 hmC)信号能使DNA特定区段发生甲基化。这在“激活”进入去核卵子的

国际首次发现植入前胚胎组蛋白修饰建立过程

  由同济大学附属第一妇婴保健院首席科学家高绍荣研究团队的相关科学新发现于2016年9月15日凌晨,在国际著名学术期刊《Nature》在线发表。该研究团队采用最新研究技术,从全基因组水平上揭示了哺乳动物植入前胚胎发育过程中的组蛋白H3K4me3和HK27me3修饰建立过程,并发现宽的(broad)H

遗传发育所在植物着丝粒表观遗传学研究中取得进展

  植物着丝粒含有大量的重复序列和反转座子,结构复杂并受表观遗传学调控。中科院遗传与发育生物学研究所韩方普实验室长期从事植物着丝粒的表观遗传学研究,曾在植物中首次发现着丝粒的失活现象并初步分析失活着丝粒的调控机制。   由于着丝粒的特殊表观遗传学调控机制,植物着丝粒的DNA序列暂不能直接用于植物人

生科院植物春化作用表观遗传机制研究取得重要进展

  10月26日,中国科学院上海生命科学研究院上海植物逆境生物学研究中心何跃辉研究组,以Embryonic epigenetic reprogramming by a pioneer transcription factor in plants为题的研究论文,在线发表在Nature上。2016年12

Cell新发现颠覆表观遗传传统认知

  来自美国托马斯杰斐逊大学的一个研究团队获得了关于组蛋白修饰作用相反的证据。在一项果蝇胚胎研究中,他们发现亲代的甲基化组蛋白并没有转移给子代DNA。相反,在DNA复制后,由新合成的未修饰组蛋白组装成了新的核小体。相关论文发布在8月23日的《细胞》(Cell)杂志上。   托马斯杰斐逊大学生物化学

高绍荣实验室《Nature》发文揭示表观遗传学研究重大突破

  9月15日,同济大学高绍荣实验室在《Nature》杂志在线发表题为 “Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos” 的文章。首次从全基因组水平上揭示了小鼠植入前胚胎

研究揭示启动胚胎干细胞分化的表观遗传调控机制

cJUN启动胚胎干细胞分化的表观遗传调控机制示意图。课题组 供图  中国科学院广州生物医药与健康研究院(以下简称广州健康院)研究员刘晶课题组与西湖大学研究员裴端卿课题组合作揭示了染色质重塑复合物BAF和组蛋白修饰H3K27ac通过调控染色质可及性变化启动胚胎干细胞分化的分子机制。相关研究6月16日在

Science发文揭示人类早期胚胎组蛋白修饰重编程过程

  清华大学生命科学学院颉伟课题组与郑州大学第一附属医院孙莹璞/徐家伟课题组合作,揭示了人类早期发育过程中组蛋白修饰的重编程过程。研究成果以“人类亲本-合子转变中组蛋白修饰的重编程”(Resetting histone modifications during human parental-to-z

研究揭示人类早期胚胎组蛋白修饰重编程

  2019年7月4日,郑州大学孙莹璞课题组与清华大学颉伟课题组在Science上发表研究长文Resetting histone modifications during human parental-to-zygotic transition,揭示了人类早期发育过程中组蛋白修饰的重编程过程。表观遗

庄小威院士:新成像方法测量染色质的表观遗传修饰

  空间组学方法的最新发展使得单细胞转录组分析和三维基因组组织具有较高的空间分辨率。空间分辨单细胞表观基因组学方法将扩展空间组学工具的知识库,加速对细胞和组织功能的空间调节的理解。  2022年10月21日,哈佛大学庄小威团队在Cell 在线发表题为“Spatially resolved epige

遗传发育所等在表观遗传调控水稻转座子活性方面获进展

  转座元件是指在基因组中能够移动或复制并重新整合到基因组新位点的DNA片段,它们对动植物基因组的组成、进化和基因表达具有重要影响。而在宿主基因组中,如果失去对转座元件的有效抑制,这些元件将对基因表达和基因组的稳定性构成影响。水稻是主要的粮食作物同时也是重要的单子叶模式植物,其中

表观遗传修饰家族又添新成员-组蛋白丁酰化新功能诠释

  近年来,芝加哥大学赵英明教授课题组运用高分辨质谱技术发现了多种组蛋白密码,极大丰富了表观遗传修饰调控机制。在刚刚上线的国际知名期刊Molecular Cell上,该课题组又同时报道了三项最新研究成果。其中第一项研究首次发现了一种跟酮体代谢密切相关的表观遗传新修饰——组蛋白三羟基丁酰化[1];第二