中科大最新Nature子刊发现lncRNA新功能
来自中科大的消息,中国科学技术大学教授单革课题组发现并命名了一个长链非编码RNA――5S-OT,并发现在灵长类中,5S-OT RNA获取了调控多个基因可变剪切的新功能。该研究成果发表在10月3日出版的《自然-结构和分子生物学》上。论文的共同第一作者为课题组的博士生胡珊珊和硕士生王小林。从酵母到人类的各种真核细胞中,基因组DNA上的信息主要是由RNA聚合酶II及RNA聚合酶III读取并转录产生相应的RNA。这些RNA按照其是否会作为蛋白质翻译的模板,可以分为编码RNA(mRNA,即信使RNA)和非编码RNA。非编码RNA是一大类不编码蛋白质而在细胞中起着调控作用的RNA分子。而mRNA往往以大的pre-mRNA前体方式产生并随后进行剪切,产生能真正作为翻译蛋白质的mRNA模板。研究人员发现,在高级灵长类和人类当中,5S-OT RNA获取了调控多个基因可变剪切的新功能。在高级灵长类和人类中,5S-OT中插入了一个反义Alu序列,并因......阅读全文
中国科大在动物长链非编码RNA研究中取得进展
中国科学技术大学生命科学学院非编码RNA功能及功能机理研究团队近日在国际期刊《基因组生物学》(Genome Biology)发表了题为Systematic evaluation of C. elegans lincRNAs with CRISPR knockout mutants 的文章,报道了
仅需1个长非编码RNA变化足以逆转细胞衰老
随着时间推移,细胞慢慢老化,许多疾病发病都跟细胞衰老有关。诱导细胞再生是对抗细胞衰老相关疾病的核心策略之一。然而,老化细胞往往高度抵抗任何旨在诱导再生的操作。(老年成纤维细胞重编程效果低下) 虽然众所周知RNA负责细胞内蛋白质合成,但是一类被称为非编码RNA的特殊分子从来不会被转化为蛋白质,事
“非编码RNA调控作用”重大研究计划2015项目指南
国家自然科学基金委员会现发布重大研究计划“基因信息传递过程中非编码RNA的调控作用机制”2015年度项目指南,请申请人及依托单位按项目指南中所述的要求和注意事项申报。 附件:“基因信息传递过程中非编码RNA的调控作用机制”重大研究计划2015年度项目指南 国家自然科学基金委员会
非编码序列内含子子长度多度性((ILPs)
实验概要本实验中运用Perl脚本用于比较Nipponbare和93-11基因组序列,从而开发潜在的ILP标记,通过EPIC-PCR开发候选ILP标记,最后用实验验证及评价了ILP标记。实验步骤1. 水稻釉粳亚种基因组比较搜索ILP我们运用Perl脚本用于比较Nipponbare和93-11基因组序列
长链非编码RNA对脑生长起重要作用
“长非编码RNA通常被描述为‘基因组的暗物质’。在这里,我们系统地研究了它们对大脑发育、长期记忆储存、衰老和痴呆导致的记忆力下降的分子机制,”Puthanveettil说。 RNA是细胞的主要调节因子,是读取、转录和调节DNA表达以及构建蛋白质的小型核苷酸链,虽然科学家们已经掌握了脑细胞之间如
曹雪涛团队再发Nature——揭示新型非编码RNA调控网络
先天性免疫反应可保护宿主免受病原体感染,并向病原体施加进化压力,以减弱这些反应并确保其存活和复制的策略。这些不断变化的压力导致了跨宿主-病原体相互作用的先天性免疫稳态的复杂机制,但尚未得到全面了解。尤其是,更好地了解控制宿主与病原体相互作用并促进入侵病原体清除或逃逸的调节剂,可以确定传染病和慢性
m6A“RNA甲基化”研究汇总—非编码RNA篇
RNA甲基化是目前申请国自然项目热点,也是唯一能在短短3个月内发数十篇nature,cell级别高分文章领域,近期RNA甲基化研究引起了科研工作者的研究热潮。因mRNA参与蛋白编码,之前多数文章针对mRNA甲基化进行研究(详细见云序课堂之前往期回顾)。然而许多研究表明发生m6A甲基化的非编码RNA在
中科院Nature子刊发表非编码RNA研究重要发现
来自中科院动物研究所生物膜与膜生物功能国家重点实验室的研究人员在新研究中证实,CARL lncRNA通过破坏miR-539依赖性的PHB2下调,抑制了心肌细胞中缺氧诱导的线粒体分裂和凋亡。 领导这一研究的是中科院动物研究所细胞增殖与信号调控研究组组长李培峰(Pei-Feng Li)
概述基因组结构和致白血病的机理
1983年Seiki等对HTLV-Ⅰ型病毒基因组的全核苷酸序列进行了分析,结果表明是由9032个核苷酸组成,末端重复序列为754个核苷酸,基因组的排列次序为gag-pol-env,未发现有onc基因,表明为非缺失性病毒。但是Seiki等发现在HTLV-Ⅰ型病毒核苷酸序列的rnc基因与3'
解读“生命之书”--新发现填补人类基因组图谱空白
美国加州大学圣地亚哥分校(UCSD)的研究人员制作了一份人类基因组的单细胞染色质图谱,确定了240种多基因特征和与疾病特征相关的细胞类型,并注释了非编码DNA变异的风险,有利于更好地理解遗传学与疾病之间的联系。这一发现发表在12日的《细胞》杂志在线版上。 此前,科学家在公布最新的被称为“生命之
惊喜!Cell:沉默“垃圾”基因,阻止肿瘤生长
12月14日,《Cell》期刊最新发表一篇题为“Oncogenic Role of THOR, a Conserved Cancer/Testis Long Non-coding RNA”的文章揭示了一个长非编码RNA——THOR,虽然不编码蛋白质,但是却对癌细胞有“直接影响”。科学家们最新发现
关于转座酶基因的作用的介绍
在基因组进化过程中,转座酶基因的作用在许多方面起作用。最明显的效应是转座子能够启动重组,最后导致基因组重排。这种作用与这些转座因子的转座活性无关,而只是由于染色体上有某一转座因子的几份拷贝,于是在同一染色体或不同染色体上有着相同转座因子序列的部位之间发生重组。重组的结果可能会缺失若干个有重要功能
概述基因治疗的基本步骤
1、转移 在基因治疗中迄今所应用的目的基因转移方法可分为两大类:病毒方法和非病毒方法。基因转移的病毒方法中,RNA和DNA病毒都可用为基因转移的载体。常用的有反转录病毒载体和腺病毒载体。转移的基本过程是将目的基因重组到病毒基因组中,然后把重组病毒感染宿主细胞,以使目的基因能整合到宿主基因组内。
基因治疗的基本步骤
转移基因治疗在基因治疗中迄今所应用的目的基因转移方法可分为两大类:病毒方法和非病毒方法。基因转移的病毒方法中,RNA和DNA病毒都可用为基因转移的载体。常用的有反转录病毒载体和腺病毒载体。转移的基本过程是将目的基因重组到病毒基因组中,然后把重组病毒感染宿主细胞,以使目的基因能整合到宿主基因组内。非病
关于基因治疗的基本步骤介绍
1、转移 在基因治疗中迄今所应用的目的基因转移方法可分为两大类:病毒方法和非病毒方法。基因转移的病毒方法中,RNA和DNA病毒都可用为基因转移的载体。常用的有反转录病毒载体和腺病毒载体。转移的基本过程是将目的基因重组到病毒基因组中,然后把重组病毒感染宿主细胞,以使目的基因能整合到宿主基因组内。
基因治疗的基本步骤
转移基因治疗在基因治疗中迄今所应用的目的基因转移方法可分为两大类:病毒方法和非病毒方法。基因转移的病毒方法中,RNA和DNA病毒都可用为基因转移的载体。常用的有反转录病毒载体和腺病毒载体。转移的基本过程是将目的基因重组到病毒基因组中,然后把重组病毒感染宿主细胞,以使目的基因能整合到宿主基因组内。非病
2025蛋白质组学大会之非变性质谱分析与蛋白质结构
分会报告水雯箐 教授上海科技大学Conformational Dynamics of GPCR Signaling Complexes Revealed by Structural MS 上海科技大学水雯箐教授围绕G蛋白偶联受体(GPCR)复合物的结构动态性,展示其课题组发展、联用多种结构质谱方法
在蛋白质中加入新的非天然氨基酸,改写遗传密码!
宇宙无垠,生命的可能无穷无尽。在神话故事中,无论是女娲造人,还是上帝创生,都是由一个高等的存在去创造出自然万物。有趣的是,随着人类对遗传进化的认知发展,科学家们也逐渐可以操控一个生物的基因组,使其表达特定基因,行使特定功能。 这些基因水平上的操作,就像是裁缝裁剪布料一样,只能改变样式,而无法从
自闭症儿童可能遗传父系DNA突变
基于新发现,研究人员提出了一种更复杂的自闭症模型。图片来源:MEGAPRESS 没有一种基因,当其突变时,会导致自闭症。但在过去的10年中,研究人员已经发现了数百种基因变异,似乎会影响大脑发育,从而增加患自闭症的风险。然而,这些科学家主要研究的是DNA的变异,这些变异直接编码了蛋白质
自闭症儿童可能遗传父系DNA突变
基于新发现,研究人员提出了一种更复杂的自闭症模型。图片来源:MEGAPRESS 没有一种基因,当其突变时,会导致自闭症。但在过去的10年中,研究人员已经发现了数百种基因变异,似乎会影响大脑发育,从而增加患自闭症的风险。然而,这些科学家主要研究的是DNA的变异,这些变异直接编码了蛋白质组成部
哈佛大学新研究揭示衰老与动脉粥样硬化之间的关系
生物谷BIOON/ --人类基因组中大约75%不具有编码蛋白质的功能。但是,基因组的这些非编码区域并不是简单的“垃圾”序列。近日,由哈佛大学心血管医学系Mark Feinberg教授等人揭示了非编码基因在动脉粥样硬化形成中的作用。 动脉粥样硬化是一种因血管变硬变窄,阻碍血液流动并导致心脏病发生
研究者们解开乳腺癌“暗物质”之谜
虽然癌细胞基因组中的蛋白质编码基因往往存在突变现象,但对于非编码区域来说,它们的突变也会导致肿瘤的生长。最近一项研究则从乳腺癌中找到了这样的例子。 虽然癌细胞基因组中的蛋白质编码基因往往存在突变现象,但对于非编码区域来说,它们的突变也会导致肿瘤的生长。最近一项研究则从乳腺癌中找到了这样的例
一种非编码RNA会成为治疗心脏病的新药物标靶吗?
一项新的研究发现了一类能使小鼠发生心力衰竭的非编码RNA,它可能会成为心脏病的一种治疗标靶。人类基因组中只有1.5%的基因会编码蛋白质,而其余的基因会维持在非转录状态或转变成非编码RNAs,后者指的是那些不会编码蛋白质的RNA分子。这些分子在人类基因组世界中基本上还是一个未知的领域,尤其是其与疾
Nat-Catalysis:RNA是如何保证被准确转录的?
生命的信息通过信使RNA的转录和蛋白质的翻译在我们的基因组DNA中编码以执行细胞功能。为了确保准确的转录, RNA聚合酶II将合成并校正信使RNA以去除任何不匹配的错误。 虽然已知RNA聚合酶II对于确保转录的准确性至关重要,但对于这种酶如何完成这项艰巨的任务而言,这是一个长期存在的难题。科学
Nat-Commun:科学家们首次对心脏中的RNA结构进行成像!
近日,一项刊登在国际杂志Nature Communications上的研究报告中,来自洛斯阿拉莫斯国家实验室等机构的科学家们通过研究揭示了一种特殊类型RNA分子的3-D图像,其对于干细胞重编程至关重要,被称之为基因组中的“暗物质”。图片来源:Los Alamos National Laborat
基因克隆的常用方法
基因克隆的常用方法 基因(gene)是遗传物质的最基本单位,也是所有生命活动的基础。不论要揭示某个基因的功能,还是要改变某个基因的功能,都必须首先将所要研究的基因克隆出来。特定基因的克隆是整个基因工程或分子生物学的起点。本文就基因克隆的几种常用方法介绍如下。
重磅-|-3篇Nature背靠背发表,科学家发现新型的致癌机制
在所有真核细胞中,基因表达分三步进行,分别由RNA聚合酶(RNA polymerase)、剪接体(Spliceosome)、和核糖体(Ribosome)执行。首先,储存在遗传物质DNA序列中的遗传信息必须通过RNA聚合酶的作用转变成前体信使RNA (precursor messenger RNA
PacBio单分子测序揭示丹参叶绿体DNA修饰的相互作用
2014年6月10日,中科院药用植物研究所(IMPLAD)刘昶团队在《PLOS ONE》杂志上发表了利用PacBio测序技术揭示丹参(Salvia miltiorrhiza)叶绿体DNA修饰之间复杂相互作用的相关文章,该文章报道了丹参叶绿体中编码及非编码RNA的表达情况。这也是国内PacBio第
Nature发布迄今为止表观遗传最全面图谱
30,000个人类疾病为什么出现的原因 二十年前的这个月,第一张人类基因组草图公布。这一项目带来的主要惊喜是,人们发现只有1.5%的人类基因组由蛋白质编码基因组成。 在过去的二十年间,那些最初被认为是“垃圾DNA”的非编码DNA片段被证明在发育和基因调控中起着至关重要的作用。而在一项最新研究
《Nature-Genetics》:癌症的基因组结构研究
癌症的基因组结构研究发表《Nature Genetics》 B细胞通过一系列精心控制的染色体重排和“良好”突变产生抗体,这些突变使细胞能够产生大量不同的抗体。“尽管变化对产生大量多样的抗体至关重要,但仍有可能发生‘坏’突变并导致B细胞源性癌症,”研究负责人、哥伦比亚大学内科医师和外科医生学院微