Antpedia LOGO WIKI资讯

日本科学家开发新型药物有望治疗尼曼匹克病

细胞一些生理过程的副产物需要及时清除或降解保证细胞行使正常功能。溶酶体是细胞主要的废物处理系统,一旦一些基因异常影响了溶酶体功能就会导致废物堆积在细胞内影响细胞功能。 尼曼匹克病是一种罕见的遗传病,能够影响细胞内负责将胆固醇从溶酶体转运到其他部位的两个关键蛋白。胆固醇在溶酶体内的积累会导致一些致命问题的出现,比如进行性神经退化,以及肝脾肿大等。 之前有研究曾开发出一种药物能够大大降低细胞内因尼曼匹克病导致的胆固醇积累,并且得到许多关注,但是研究发现高浓度药物会对小鼠产生很强的毒性作用。来自日本东京的研究人员想要通过研究找到一种提高药物效率,避免毒性作用的新方法。 在这项研究中,研究人员开发了一种运输策略,可以将这种叫做HP-β-CD的环状糖分子药物运送到溶酶体,并且不影响其他细胞结构。他们将这种环状分子连接到一种叫做聚轮烷的哑铃状分子上,这个哑铃状分子的两端装有一种叫做N-Trt的“塞子”,保证HP-β-CD位于聚轮烷......阅读全文

NCB | 内质网-溶酶体接触是胆固醇mTORC1信号调控的枢纽

  真核生物中细胞器间的物质和信号交流对细胞生长和稳态调节至关重要,其失调会导致肿瘤、代谢紊乱及免疫疾病的发生。目前,细胞器间的接触是否以及如何控制细胞内的生长信号和稳态调节的,仍有待研究。内质网(ER)与其他细胞器通过特定载体调节胆固醇等脂类的交换是细胞器物质交流的一种重要形式【1】。胆固醇通过低

科学家揭示溶酶体生成的调控机制

  《自然-细胞生物学》(Nature Cell Biology)于9月12日以长文(Article)形式在线发表中国科学院遗传与发育生物学研究所杨崇林研究组与中国科学院昆明植物研究所郝小江研究组的合作研究论文PKC controls lysosome biogenesis independentl

PNAS:溶酶体在调控细胞静息状态深度和老化关系的作用

  2019年10月21日,北京大学生物医学前沿创新中心(BIOPIC)、生命科学学院白凡课题组与美国亚利桑那大学姚广课题组合作在《美国国家科学院院刊》(PNAS)上发表题为“Graded regulation of cellular quiescence depth between prolife

研究由结构损伤诱导的溶酶体激活通路

  11月14日,Developmental Cell 在线发表了中国科学院生物大分子卓越创新中心、生物物理研究所王晓晨课题组的研究成果:An ECM-to-nucleus signaling pathway activates lysosomes for C. elegans larval dev

亚细胞(细胞器)构造的组成与功能

分离与纯化对象之一:“亚细胞(细胞器)”的构造与功能     上世纪20年代以Svedberg为首的欧洲科学家艰难研制的超速离心机原型主要目的是想分离和纯化病毒、细胞和亚细胞构造(细胞器),然而50年代中期开始生产的*代及以后的各代超速离心机,在很长

溶酶体染色试剂盒(蓝/绿/橙/红色荧光)溶酶体染色方案

溶酶体(lysosomes)真核细胞中的一种细胞器。1955年由比利时学者C.R.de迪夫等人在鼠肝细胞中发现。溶酶体是单层膜围绕、内含多种酸性水解酶类的囊泡状细胞器,其主要功能是进行细胞内消化,专司分解各种外源和内源的大分子物质。细胞内的溶酶体具有异质性,形态大小及内含的水解酶种类都可能有很大的不

PNAS:蛋白错误定位导致溶酶体缺陷

  为了保持健康,机体中的细胞必须正确经营自己的废料回收中心——溶酶体。人们发现,溶酶体出现问题与多种疾病有关。   华盛顿大学医学院的科学家们发现,磷酸转移酶的错误定位会导致一种溶酶体贮积病(粘脂贮积症III型),文章发表在美国国家科学院院刊PNAS杂志上。这种罕见的疾病会引起骨骼和心脏异常,缩

《自然》:从内部瓦解癌细胞

  溶酶体是细胞中主要的降解处理器,参与了细胞死亡途径。一项利用现有药物的研究表明,溶酶体可以作为理想的药物靶标,用于选择性摧毁癌细胞。   生物通报道:近几十年来,科学家们展开了许多针对癌症阿喀琉斯之踵的研究,想方设法杀伤肿瘤细胞,而不影响正常细胞。其中癌症化疗开始于20世纪40年代,促进了我们

杨崇林、郝小江团队Nature子刊解析重要机制

  溶酶体是细胞的资源回收中心,负责清除受伤或垂死的细胞组分。溶酶体会控制自身的生物合成,对环境线索进行应答。不过,人们对这一过程的具体机制还知之甚少。中科院团队九月十二日在Nature Cell Biology杂志上发表文章,揭示了蛋白激酶C调控溶酶体生物合成的分子机制。这篇文章的通讯作者是中科院

自噬双标腺相关病毒说明(一)

一.关于自噬及LC31. 自噬大自噬(macroautophagy),也就是通常说的自噬(autophagy),是真核细胞蛋白降解的途径之一。自噬可以被描述为细胞质内的成分(细胞器、蛋白等)被双层膜的囊泡包裹,形成自噬体(autophagosome),进而传递到溶酶体进行降解的过程。详细来说,自噬过

科学家解密溶酶体相关疾病关键蛋白调控机制

  1月23日,由中国科学院昆明动物研究所离子通道药物研发中心、美国哥伦比亚大学和清华大学合作完成的最新研究成果,以Structural basis of Ca2+/pH dual regulation of the endolysosomal Ca2+ channel TRPML1 为题在《自然-

探秘细胞程序性死亡之其二-细胞自噬工具

前情回顾:探秘细胞程序性死亡1——细胞凋亡及检测工具大盘点 就像我们会打扫以保持房间整洁一样,细胞也演化出了一系列“清洁”机制,来维持有序的生命活动。自噬(autophage)就是其中最重要的机制之一。自噬于上个世纪60年代被发现,但引起科学界的广泛关注,还是在1990年代日本科学家大隅良

知识分享:细胞自噬研究详解

  一、自噬简介    1、大自噬(macroautophagy),也就是通常说的自噬(autophagy),是真核细胞蛋白降解的途径之一。自噬可以被描述为细胞质内的成分(细胞器、蛋白等)被双层膜的囊泡包裹,形成自噬体(autophagosome),进而传递到溶酶体进行降解的过程。    详

管坤良教授Nature子刊解析重要的GTP酶

  Rag蛋白家族是类似Ras的小GTPase,在氨基酸刺激的mTORC1活化过程中具有关键性的作用,可以将mTORC1招募到溶酶体。日前,加州大学的研究团队对Rag GTPase进行研究,为人们揭示了这种蛋白在活体内的生理功能。这一成果于七月一日发表在Nature旗下的Nature Communi

细胞溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂盒

  细胞溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂盒产品说明书(中文版)   主要用途   细胞溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂是一种旨在通过溶酶体脂酶反应系统中,在选择性抑制剂存在与否的情况下,底物胆固醇油酸酯水解后的游离脂肪酸,与醋酸铜反应后的蓝绿色产物,呈现吸光峰值的变化,即

特异性检测溶酶体亚硫酸氢盐新武器:新款智能荧光探针

  文章提出了一种新的基于逻辑与的荧光探针(NY-Lyso),它由吗啉基、半花菁苷和1,8-萘二甲酰亚胺显色团组成,用于特异性检测溶酶体中的亚硫酸氢盐。该智能探针由两个功能部件组成:NY-Lyso探针上的吗啉基对细胞内溶酶体(pH 4.5-5.5)和其他细胞器之间的pH差异产生敏感反应,噻吩和花菁之

组织溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂盒

  组织溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂盒产品说明书(中文版)   主要用途   组织溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂是一种旨在通过溶酶体脂酶反应系统中,在选择性抑制剂存在与否的情况下,底物胆固醇油酸酯水解后的游离脂肪酸,与醋酸铜反应后的蓝绿色产物,呈现吸光峰值的变化,即

Cell惊人发现:溶酶体也有后备计划

  杜克大学的研究团队发现,膀胱细胞的溶酶体在发生故障之后能够启用后备计划,把入侵的致病菌吐出去。这项研究发表在五月二十八日的Cell杂志上。  膀胱细胞和溶酶体的这种天然特性可以帮助人们更好的治疗尿路感染UTI。UTI是最常见的感染性疾病之一,极易复发和重新感染。这种疾病是多种微生物入侵引起的,其

细胞溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂...

细胞溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂盒使用说明主要用途细胞溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂是一种旨在通过溶酶体脂酶反应系统中,在选择性抑制剂存在与否的情况下,底物胆固醇油酸酯水解后的游离脂肪酸,与醋酸铜反应后的蓝绿色产物,呈现吸光峰值的变化,即采用比色法来测定细胞裂解萃取样品

Science:突破免疫的防线

  沙门氏菌是一种肠道菌,会引发肠胃炎和伤寒症等疾病。日前,伦敦帝国理工学院研究人员发表了一项新研究,揭示了沙门氏菌阻碍细胞防御机制的详细机制,文章发表在十一月十五日的Science杂志上。   将较小的细菌吞噬是细胞抵御感染的途径之一,随后细胞会用溶酶体中所含的毒性酶攻击病原菌。而Science

JACS:季铵哌嗪取代罗丹明具有亮度增强的超分辨率成像

  近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但

季铵哌嗪如何实现荧光超分辨率成像?

  近年来,先进的荧光成像技术得到了快速的发展,但是与成像技术的治疗进化相比,具有足够亮度和光稳定性的染料的发展仍然缓慢,如单分子定位显微镜(SMLM),其分辨率超过了衍射极限。但是荧光团亮度不足成为了超分辨显微镜发展的一大瓶颈,这也对体内细胞动力学研究构成了重要的限制。比如罗丹明染料被广泛应用,但

正常血细胞的超微结构

 1.透射电镜下的超微结构 (1)粒细胞系统   1)原始粒细胞 平均直径10um左右, 圆形或椭圆形,表面平滑,微绒毛很少。胞核大,核占整个细胞的大部分,呈圆形或椭圆形,可有浅的凹陷,核内常染色质占优势,异染色质少,在核膜处呈薄层凝集,有一至几个核

正常血细胞的超微结构

1.透射电镜下的超微结构  (1)粒细胞系统      1)原始粒细胞 平均直径10um左右, 圆形或椭圆形,表面平滑,微绒毛很少。胞核大,核占整个细胞的大部分,呈圆形或椭圆形,可有浅的凹陷,核内常染色质占优势,异染色质少,在核膜处呈薄层凝集,有

正常血细胞的超微结构

1.透射电镜下的超微结构 (1)粒细胞系统 1)原始粒细胞 平均直径10um左右, 圆形或椭圆形,表面平滑,微绒毛很少。胞核大,核占整个细胞的大部分,呈圆形或椭圆形,可有浅的凹陷,核内常染色质占优势,异染色质少,在核膜处呈薄层凝集,有一至几个核位。胞质少,内有大量游离核糖体,糙面

亚细胞(细胞器)构造的组成与功能(四)

三.内质网:(endoplasmic reticulum)         粗面内质网:最重要的功能是合成输出蛋白(或称分泌蛋白:包括各种肽类、激素、酶类和抗体)   &

组织溶酶体脂酶(酸性脂酶)活性比色法定量检...(一)

组织溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂盒使用说明主要用途组织溶酶体脂酶(酸性脂酶)活性比色法定量检测试剂是一种旨在通过溶酶体脂酶反应系统中,在选择性抑制剂存在与否的情况下,底物胆固醇油酸酯水解后的游离脂肪酸,与醋酸铜反应后的蓝绿色产物,呈现吸光峰值的变化,即采用比色法来测定组织裂解萃取样品

Cell综述丨 十年之后的升级版——细胞自噬与疾病

  2016年日本科学家大隅良典(Yoshinori Ohsumi)独获诺贝尔生理或医学奖,获奖理由是在细胞自噬(autophagy)领域所做出的杰出贡献。自从细胞自噬(该概念并非大隅良典首创)这一概念被提出以后,至今已经有将近40000篇文章与其有关。  细胞自噬,是细胞内容物(Cargo)被运输

如何阻止癌细胞转移?PNAS出妙招:抑制溶酶体

  很多癌症之所以凶险,都与肿瘤细胞转移有关。近日,《PNAS》期刊描述了科罗拉多大学癌症中心的科学家们发现的对抗癌转移的新策略:通过关闭细胞“自己吃自己”的重要一步,促使癌细胞无法转移。  细胞自噬  来自于科罗拉多大学癌症中心的科学家们关注的是“细胞自噬”(Autophagy)过程。  自噬源于

细胞自噬工具

就像我们会打扫以保持房间整洁一样,细胞也演化出了一系列“清洁”机制,来维持有序的生命活动。自噬(autophage)就是其中最重要的机制之一。自噬于上个世纪60年代被发现,但引起科学界的广泛关注,还是在1990年代日本科学家大隅良典(Yoshinori Ohsumi)做的相关研究。大隅良典也因此获得