有机双光子荧光染料在生物成像中的应用取得新进展
传统的荧光分子多数会有聚集诱导淬灭效应(Aggregation Caused Quenching, ACQ),限制了其应用。聚集诱导发光(Aggregation Induced Emission, AIE)荧光分子不同于传统的荧光分子,在聚集的条件下产生荧光,具有生物相容性好、背景荧光较低等特点。在生化分析中应用AIE分子,可以免去在细胞、细菌等荧光定位中多次洗涤去除背景荧光的步骤,还可以实现快速和清晰荧光定位的目的。 中国科学院成都生物研究所天然药物与临床转化重点实验室研究员邵华武课题组与国家纳米科学中心研究员蒋兴宇课题组合作发展了纳米尺度的有机双光子荧光染料并应用于细胞线粒体和微生物成像中。将聚集诱导发光的分子通过不同的化学修饰,应用到双光子激发的细胞线粒体及微生物定位中。该类聚集发光的荧光分子能够聚集成20-40nm作用的纳米颗粒,通过单光子激发或双光子激发,这些颗粒能够准确定位到细胞线粒体内,实现对线粒体的精准靶向......阅读全文
有机双光子荧光染料在生物成像中的应用取得新进展
传统的荧光分子多数会有聚集诱导淬灭效应(Aggregation Caused Quenching, ACQ),限制了其应用。聚集诱导发光(Aggregation Induced Emission, AIE)荧光分子不同于传统的荧光分子,在聚集的条件下产生荧光,具有生物相容性好、背景荧光较低等特点
有机双光子荧光染料在生物成像中的应用取得新进展
传统的荧光分子多数会有聚集诱导淬灭效应(Aggregation Caused Quenching, ACQ),限制了其应用。聚集诱导发光(Aggregation Induced Emission, AIE)荧光分子不同于传统的荧光分子,在聚集的条件下产生荧光,具有生物相容性好、背景荧光较低等特点
活体成像中荧光染料的选择与成像
Cy5.5(Ex/Em:678/701 nm)和Cy7(Ex/Em:749/776 nm)是对分子标记的最优选择之一;DiD(Ex/Em:644/663 nm)、DiR(Ex/Em:748/780)染料则常用于活体成像实验中对细胞进行标记。 一、Cy5.5 、Cy7 Cy5.5 、Cy7避开了可见
双光子成像和光声成像的区别
特点、性质。双光子成像和光声成像的区别在于特点、性质。1、特点:光声成像能够实现高特异性光谱组织的选择激发。双光子成像能够调节分辨率和成像深度,是近年来新兴的成像技术。2、性质:光声成像 结合了光学成像和声学成像的优点。双光子是近红外(NIR)一区(750-1000nm)和NIR二区(1000-17
LaVision双光子显微镜多线扫描双光子成像(四)
2.3. 多线TPLSM中的获取模式 我们以两种获取模式操作多线TPLSM:第一种,整个研究使用所谓“帧扫描”模式,以64束激光在X、Y方向扫描样品。因此焦平面上激发了均一性照明,假定光束阵列的横向步长尺寸没有过于粗糙(通常使用≤400 nm的步长尺寸)。在Fig. 3A,展示了以“帧
LaVision双光子显微镜多线扫描双光子成像(二)
2. 方法与结果 为了从激光扫描显微镜的功能性成像中得出重要结论,一个高的时间分辨率是很重要的。在低光情况下,这通常通过进行单线扫描来获取。这被以一个垂直系统(VS)神经元的突触前分支的激光共聚焦(Leica SP2)钙离子成像示例 (see Fig. 1, Table 1). 这类神
LaVision双光子显微镜多线扫描双光子成像(三)
2.2.多线TPLSM中通过成像检测释放光 在单光束TPLSM中,光电倍增管PMT或者雪崩二极管APD可以很方便地用于释放光检测,由于双光子激发的原理,激发只发生在激光焦点处。因此,用于屏蔽离焦光线的共焦小孔变得不必要,并且可以使用NDD检测。这意味着激发光不会被送回扫描镜,而是直接进入位于靠
LaVision双光子显微镜多线扫描双光子成像(一)
Journal of Neuroscience Methods 151 (2006) 276–286Application of multiline two-photon microscopy to functional in vivo imagingRafael Kurtz a,∗, Matthi
氮掺杂石墨烯量子点在双光子荧光成像研究取得进展
双光子荧光成像技术具有近红外激发、避免光毒作用和光漂白、自发荧光干扰弱及较深的组织穿透深度等优点,在生物医药领域研究中受到极大关注。开发具有高双光子吸收截面、生物相溶性好的材料作为双光子荧光探针,是活细胞和深层组织成像研究领域的关键和热点。 国家纳米科学中心宫建茹研究组以氧化石墨烯为前驱体
多光子显微镜成像技术:双光子显微镜角膜成像
角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。图1 角膜的组织学结构上皮层负责阻挡异物落入角膜,厚约50μm,由三种细胞构成,从外到内依次是表层细胞、翼细胞和基底细胞。只有基底细胞可进行有丝分裂和分化,基底细胞的补充是由从角膜
多光子显微镜成像技术:双光子显微镜角膜成像
角膜提供了眼睛的大部分折射能力,由5层组成(图1),从外到内依次是上皮层,鲍曼层、基质、角膜后弹力层(间质膜)、内皮层。 wx_article_20200815180121_819doe.jpg 图1 角膜的组织学结构 上皮层负责阻挡异物落入角膜,厚约50μm,由三
双光子荧光显微镜
在一般的荧光现象中,由于激发光的光子密度低,一个荧光分子只能同时吸收一个光子,再通过辐射跃迁发射一个荧光光子,这就是单光子荧光。对于以激光为光源的荧光激发过程,则可能产生双光子甚至多光子荧光现象,这时所用的激发光源强度高,光子密度满足荧光分子同时吸收两个光子的要求。以一般的激光为激发光源的过程中,光
机制“协同”提高荧光蛋白和荧光染料细胞成像性能
近日,中国科学院大连化学物理研究所研究员徐兆超、副研究员苗露团队通过调控荧光蛋白与荧光染料之间的荧光共振能量转移,提高了荧光蛋白的光稳定性,并基于化学遗传学策略赋予外源荧光染料遗传编码荧光,解决了荧光染料因非特异性标记而产生背景荧光信号的问题,协同提高了荧光蛋白和染料在活细胞成像中对靶蛋白标记和成像
单分子荧光染料——ATTO荧光染料
单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某
单分子荧光染料——ATTO荧光染料
单分子荧光检测技术是近十年来迅速发展起来的一种超灵敏的检测技术,其检测尺度可以精确到纳米量级,是单分子检测的首选方法。该检测技术利用荧光标记来显示和追踪单个分子的构象变化、动力学、单分子之间的相互作用以及进行单分子操纵。而荧光染料作为重要的标记物在单分子检测中起到了举足轻重的作用。荧光染料,指吸收某
荧光染料
中文名荧光染料外文名fluorescent dye定义:荧光染料是指吸收某一波长的光波后能发射出另一波长大于吸收光的光波的物质。它们大多是含有苯环或杂环并带有共轭双键的化合物。荧光染料可以单独使用,也可以组合成复合荧光染料使用。
双光子显微镜活体单细胞成像揭示生物钟发育过程
3月14日,PLOS Biology 期刊在线发表了题为《斑马鱼生物钟的活体单细胞成像》的研究论文。该研究由中国科学院脑科学与智能技术卓越创新中心(神经科学研究所)、上海脑科学与类脑研究中心、神经科学国家重点实验室严军研究组、何杰研究组与安徽医科大学附属第一医院教授李元海合作完成。该研究成功构建
关于多光子激发成像技术特点的概述
Periasamy 和 Skoglund 等比较了相同光学配置下,双光子激光扫描显微镜和共聚焦扫描显微镜 [4]对非洲蟾蜍囊胚以及神经轴胚体细胞的成像能力。 研究结果表明,双光子激发成像穿透深度大、受细胞的固有荧光影响小。 因而 ,双光子提供了研究细胞内动力学、物质空间分布及结构的最佳方法。与荧
双光子荧光显微镜的优点
双光子荧光显微镜有很多优点:1)长波长的光比短波长的光受散射影响较小容易穿透标本;2)焦平面外的荧光分子不被激发使较多的激发光可以到达焦平面,使激发光可以穿透更深的标本;3)长波长的近红外光比短波长的光对细胞毒性小;4)使用双光子显微镜观察标本的时候,只有在焦平面上才有光漂白和光毒性。所以,双光子显
谭蔚泓院士团队《JACS》,《Angew》齐发!
《JACS》:基于DNA的膜蛋白动态模拟用于编程适应性细胞相互作用在多细胞生物中,细胞相互交流以响应其微环境的变化,这种能力构成了多细胞生物的生命基础。越来越多的证据表明,这些细胞相互作用主要是通过膜蛋白的动态和特异性调节来协调的。例如当肿瘤细胞在肿瘤微环境中感受到特异性促炎细胞因子(如IFNγ
谭蔚泓院士团队《JACS》,《Angew》齐发!
《JACS》:基于DNA的膜蛋白动态模拟用于编程适应性细胞相互作用在多细胞生物中,细胞相互交流以响应其微环境的变化,这种能力构成了多细胞生物的生命基础。越来越多的证据表明,这些细胞相互作用主要是通过膜蛋白的动态和特异性调节来协调的。例如当肿瘤细胞在肿瘤微环境中感受到特异性促炎细胞因子(如IFNγ
双光子深层光激活成像显微镜落户中科院生物物理所
中国科学院生物物理研究所膜蛋白结晶自动化加样工作站及双光子深层光激活成像显微镜采购项目中标及成交结果公告 采购人名称:中国科学院生物物理研究所 采购代理机构全称:东方国际招标有限责任公司 采购项目名称:中国科学院生物物理研究所膜蛋白结晶自动化加样工作站及双光子深层光激活成像显微镜采购项
荧光染料增殖实验
CFSE检测法CFSE是一种可穿透细胞膜的荧光染料,具有细胞膜通透性,能够自由进入细胞;当CFSE扩散穿过细胞膜,会与细胞内源酯酶产生水解反应而被激发,发出绿色荧光,这些带荧光的CFSE会进一步与细胞骨架蛋白结合,形成稳定的胞内荧光蛋白。每当细胞进行分裂增殖,胞内荧光蛋白会被平均分配到下一代细胞中,
Nat-Methods-|-戴琼海团队突破荧光钙成像光子噪声极限
钙成像能够以单细胞分辨率并行记录活体动物的神经活动,为破解神经回路中信息的传播、整合和计算机制提供了可能。为了进行准确的神经功能分析,获取高信噪比的钙成像数据尤其关键。然而,由于在体钙瞬变(Calcium transient)的低峰值积累和快速动态特性【1,2】,使得探测器无法捕捉足够多的荧光光
光控荧光染料的超分辨成像研究获新进展
近日,华东理工大学费林加诺贝尔奖科学家联合研究中心与中科院上海药物研究所、国家蛋白质中心、美国得克萨斯大学奥斯丁分校以及英国巴斯大学合作,在酶激活型光控荧光染料的超分辨成像研究中取得重要进展,研究成果以“光致变色荧光探针策略实现生物标志物超分辨成像”为题发表于《美国化学会志》。 酶是人体不可
硬核!大连化物所指导开发超分辨成像自闪荧光染料
近日,大连化物所分子探针与荧光成像研究组(1818组)徐兆超研究员团队与新加坡科技设计大学刘晓刚教授团队合作,发现罗丹明染料开关环物种稳态下的吉布斯自由能的差值(ΔGC-O)同开环比例具有优异的线性关系(R2=0.965)。此线性关系可以定量地指导设计特定开环比例的罗丹明染料。 单分子定位超分
如何选择最亮的荧光染料荧光染料亮度排行汇总(二)
荧光标记染料 图4.将 HeLa细胞与(Tubulin +)或不与(Tubulin-)小鼠抗微管蛋白一起孵育,然后与iFluor™488山羊抗小鼠IgG缀合物(绿色,左)或AlexaFluor®488山羊抗小鼠IgG缀合物(绿色,右)。细胞核用Hoechst 33
如何选择最亮的荧光染料荧光染料亮度排行汇总(一)
荧光染料是细胞生物学等科学研究中不可或缺的重要工具,荧光滤色块是荧光显微镜中至关重要的一个部件。我们大家在操作荧光染料亮度的时候,我们可以按照上面的比较方法去比较荧光染料的亮度,那么一般荧光染料亮度怎么进行比较? 荧光染料的亮度可以用来比较不同荧光染料的荧光标记效果,通过
LaVision双光子显微镜肿瘤生长与入侵动态成像(一)
Dynamic imaging of cancer growth and invasion: a modiWedskin-fold chamber modelStephanie Alexander · Gudrun E. Koehl ·Markus Hirschberg · Edward K. Ge
LaVision双光子显微镜肿瘤生长与入侵动态成像(三)
Fig 4. HT-1080双色细胞的原位入侵模型。a 注射后6天入侵类型的分类。缺少入侵(上,左)并且散布单个细胞(上,右;白色箭头),散射的或者紧密地丝状整体入侵(下图)。标尺250um。 b 45个连续的非依赖性肿瘤的按中所分入侵模式的频率。11天时,沿着纹状肌肉纤维集体入侵丝的定位。