《科学》:机械应力成为打开蛋白折叠的新方法

在一项最新的研究中,美国科学家利用机械应力,成功打开了细胞骨架蛋白(Cytoskeletal proteins)的折叠(protein folding,简单说来,蛋白折叠就是肽链形成各种空间蛋白结构的过程)结构。这一结果加深了科学家对细胞行为的理解,并有望为药物开发提供新的标靶。相关论文发表在8月3日的《科学》杂志上。 细胞每时每刻都在承受各种机械力的作用。其中一些力是由肌体内部的流动性产生的,比如血液流过血管;而另一些力则来自细胞之间的相互作用。在最新的研究中,美国宾夕法尼亚州立大学的化学与分子生物学教授Dennis Discher领导的小组正是利用机械应力,诱导细胞骨架蛋白产生了构象变化。随后,研究人员通过荧光标记,测定了这些蛋白的分子序列,查明并绘制了一些隐藏的蛋白绑定结合位置,这些位置在细胞处于静态和自由状态时是无法发现的。 研究人员分别针对红血球和干细胞进行了类似的实验,都取得了成功。这一结果突破了......阅读全文

《科学》:机械应力成为打开蛋白折叠的新方法

在一项最新的研究中,美国科学家利用机械应力,成功打开了细胞骨架蛋白(Cytoskeletal proteins)的折叠(protein folding,简单说来,蛋白折叠就是肽链形成各种空间蛋白结构的过程)结构。这一结果加深了科学家对细胞行为的理解,并有望为药物开发提供新的标靶。相关论文发表在8月3

新方法可辨别蛋白质折叠关键因素

  蛋白质折叠模式帮助其执行特定任务。作为细胞的真正“实干家”,即便是蛋白质氨基酸支架的微小改变,也会引发错误折叠并且妨碍蛋白质功能或引发疾病。  科学家试图更好地理解蛋白质折叠,以治疗错误折叠引发的疾病。但这个异常复杂的过程需要复杂算法辨别折叠机制。印度塔塔基础研究所的计算生物物理学家提出了一种辨

科学家发现新型蛋白折叠驱动因子

  近期,美国宾夕法尼亚大学的研究团队发现新型的蛋白折叠驱动因子DAXX(Death Domain-associated Protein,DAXX),可以有效控制蛋白质的正确折叠。相关研究在《Nature》发表,题为:DAXX represents a new type of protein-fol

蛋白质折叠的过程

主要结构蛋白质的主要结构及其线性氨基酸序列决定了其天然构象。特定氨基酸残基及其在多肽链中的位置是决定因素,蛋白质的某些部分紧密折叠在一起并形成其三维构象。氨基酸组成不如序列重要。然而,折叠的基本事实仍然是,每种蛋白质的氨基酸序列都包含指定天然结构和达到该状态的途径的信息。这并不是说几乎相同的氨基酸序

科学家利用DNA折纸技术成功折叠蛋白质

科学家利用DNA折纸技术成功折叠蛋白质   “折纸”是指通过生物工程手段将蛋白质从一条连续链折叠成三维结构,这是《自然—化学生物学》上一篇文章的研究发现。   DNA 折纸是一种利用特定碱基来设计大量不同的结构,如笑脸、大学校徽和各种盒子等的DNA技术,该技术已经为科学家创造智能材料和研究弄

蛋白质折叠的主要结构

蛋白质的主要结构及其线性氨基酸序列决定了其天然构象。特定氨基酸残基及其在多肽链中的位置是决定因素,蛋白质的某些部分紧密折叠在一起并形成其三维构象。氨基酸组成不如序列重要。然而,折叠的基本事实仍然是,每种蛋白质的氨基酸序列都包含指定天然结构和达到该状态的途径的信息。这并不是说几乎相同的氨基酸序列总是相

简述突触核蛋白错误折叠

  研究发现α-突触核蛋白正常、错误折叠及其寡聚化之间存在动态平衡,当这种平衡被打破后原纤维迅速聚集成大分子、不溶性的细纤维;α-突触核蛋白在不同的影响因素下会表现出许多种形态,包括舒展态、溶解前球型态、α-螺旋态(膜结合),β-片层态、二聚体态、寡聚体态、以及不可溶的无定型态和纤维态;α-突触核蛋

什么是蛋白质折叠?

蛋白质折叠是物理过程,通过该蛋白链获得其天然 的三维结构中,构象即通常生物功能,以迅速和可再现的方式。这是一个物理过程,多肽从一个随机的线圈中折叠成其特征和功能性三维结构。当从mRNA序列翻译成氨基酸的线性链时,每种蛋白质都以未折叠的多肽或无规卷曲的形式存在。该多肽缺乏任何稳定的(持久的)三维结构。

蛋白质的新生肽链的折叠

近年来,对蛋白质的新生肽链在体内的折叠研究已成为一个热点,发现了许多帮助肽链折叠的蛋白质,其中有些有利于二硫键的交换和配对(二硫键异构酶)与脯氨酰参与的肽键的异构化(肽基脯氨酰异构酶),还有一大类被称为蛋白质伴侣。后者的主要特点是能和疏水性的肽段结合,一方面避免肽链因疏水作用而聚集,另一方面帮助新生

简述蛋白质折叠的生长模型

  根据这种模型,肽链中的某一区域可以形成“折叠晶核”,以它们为核心,整个肽链继续折叠进而获得天然构象。所谓“晶核”实际上是由一些特殊的氨基酸残基形成的类似于天然态相互作用的网络结构,这些残基间不是以非特异的疏水作用维系的,而是由特异的相互作用使这些残基形成了紧密堆积。晶核的形成是折叠起始阶段限速步

Cell:瓦解错误折叠蛋白的新武器

  蛋白质发生错误折叠,导致变形的蛋白无法执行正常功能,是诸如肌萎缩侧索硬化症(ALS)、阿尔茨海默氏症、帕金森病等脑病形成的关键。当前,还没有办法来逆转蛋白质错误折叠   来自宾夕法尼亚大学Perelman医学院的生物化学和生物物理学副教授James Shorter博士,现在找到了一种可能的

展望蛋白质折叠的未来前景

  包涵体复性  ▲利用DNA重组技术可以将外源基因导入宿主细胞。但重组基因的表达产物往往形成无活性的、不溶解的包涵体。折叠机制的阐明对包涵体的复性会有重要帮助。  蛋白质  ▲DNA重组和多肽合成技术的发展使我们能够按照自己的意愿设计较长的多肽链。但由于我们无法了解这一多肽将折叠为何种构象,从而无

关于蛋白质折叠的研究概况

  在生物体内,生物信息的流动可以分为两个部分:第一部分是存储于DNA序列中的遗传信息通过转录和翻译传入蛋白质的一级序列中,这是一维信息之间的传递,三联子密码介导了这一传递过程;第二部分是肽链经过疏水塌缩、空间盘曲、侧链聚集等折叠过程形成蛋白质的天然构象,同时获得生物活性,从而将生命信息表达出来;而

绘制蛋白折叠过渡状态的能级图谱

Rice大学物理学家最近获得了一种研究蛋白折叠详细过程的新途径,可用于探测折叠过程需要多少能量,在蛋白折叠科学领域有广泛的应用性。由于发现阿尔茨海莫氏症、帕金森氏症等疾病与蛋白的错误折叠有重要相关性,因此蛋白折叠科学在过去的十年中积累了大量数据。这一成果将刊登于最新一期《Physical Revie

关于蛋白质折叠的基本介绍

  蛋白质折叠(Protein folding)是蛋白质获得其功能性结构和构象的过程。通过这一物理过程,蛋白质从无规则卷曲折叠成特定的功能性三维结构。在从mRNA序列翻译成线性的肽链时,蛋白质都是以去折叠多肽或无规则卷曲的形式存在。  结构决定功能,仅仅知道基因组序列并不能使我们充分了解蛋白质的功能

关于蛋白质折叠的意义介绍

  蛋白质折叠机制的阐明将揭示生命体内的第二套遗传密码,这是它的理论意义。蛋白质折叠的研究,比较狭义的定义就是研究蛋白质特定三维空间结构形成的规律、稳定性和与其生物活性的关系。在概念上有热力学的问题和动力学的问题;蛋白质在体外折叠和在细胞内折叠的问题;有理论研究和实验研究的问题。这里最根本的科学问题

蛋白质折叠的细胞密码破解

  人们通常认为,疾病是由异物(细菌或病毒)入侵人体引起的,但影响人类的数百种疾病,其实是由细胞蛋白质生成错误引起的。美国马萨诸塞大学阿默斯特分校领导的团队最近利用尖端技术,破解了基于碳水化合物的代码,该代码控制某些蛋白质的正常形状,而正常的蛋白质形状才能使人体保持健康。研究发表在最新一期《分子细胞

蛋白质折叠的驱动力

折叠是一种自发过程,主要由疏水相互作用,分子内氢键的形成,范德华力引导,并且与构象熵相反。折叠的过程通常始于共翻译,使N末端的蛋白质的开始而折叠C-末端的蛋白质的部分仍然被合成由核糖体; 但是,蛋白质分子在生物合成过程中或之后可能会自发折叠。这些大分子可能被视为“自身折叠”,其过程还取决于溶剂(水或

关于蛋白质折叠病的介绍

  蛋白质分子的氨基酸序列不发生改变,只是其结构或者说构象有所改变也能引起疾病,称为“构象病”,或称“折叠病”。  疯牛病由Prion蛋白质的感染引起,这种蛋白质也可以感染人而引起神经系统疾病。在正常机体中,Prion是正常神经活动所需要的蛋白质,而致病Prion与正常Prion的一级结构完全相同,

未正确折叠蛋白介导的细胞凋亡

在真核生物体内,为正确折叠蛋白反应(unfolded protein response,UPR)是细胞对抗内质网应激的一种重要的自我保护机制。当细胞中出现长时间或高强度的UPR时,三种内质网上的跨膜蛋白PERK、IREI、ATF6在发挥修复作用的同时,也可以同时启动由ERS介导的三种细胞凋亡途径。P

蛋白质在缺氧时折叠

蛋白质通常由成百上千个独立的部分组成,即氨基酸。它们像链条上的链环一样连接在一起。然而,蛋白质分子不能像长丝一样来回摆动。因此,每一件作品在创作过程中都以自己独特的方式折叠起来。对于从细胞外释放或运输到细胞内储存的蛋白质,这种折叠发生在细胞的一个特定位置:内质网(ER)。这里,在蛋白质折叠过程中相互

PNAS:药物伴侣修正蛋白错误折叠

  Oregon Health & Science大学的研究人员在小鼠中展示了一项革命性的新技术,该技术将有望治疗蛋白错误折叠所引起的多种人类疾病,例如囊性纤维化、白内障和阿尔茨海默症等。文章发表在美国国家科学院院刊PNAS杂志上。   基因突变会使蛋白分子发生错误折叠,这些蛋白仍然保有功能,

超乎大自然“想象”,科学家发现大量未知蛋白质折叠

  蛋白质结构及其折叠的空间究竟有多大?大自然是否“探索”了所有这些可能?一项开创性的研究为人们提供了新线索:日本研究人员着手揭示大自然在多大程度上探索了可能的蛋白质拓扑空间,结果发现了一系列令人震惊的前所未知的蛋白质折叠,扩大了人们的理解并揭示了“蛋白质宇宙”的深度。该研究发表在最新一期《自然·结

蛋白质折叠的分子伴侣的介绍

  1978 年,Laskey 在进行组蛋白和DNA 在体外生理离子强度实验时发现,必须要有一种细胞核内的酸性蛋白———核质素(nucleoplasmin) 存在时,二者才能组装成核小体,否则就发生沉淀。据此Laskey 称它为“分子伴侣”。分子伴侣是指能够结合和稳定另外一种蛋白质的不稳定构象,并能

蛋白质折叠的框架模型的介绍

  框架模型[4] 假设蛋白质的局部构象依赖于局部的氨基酸序列。在多肽链折叠过程的起始阶段,先迅速形成不稳定的二级结构单元; 称为“flickering cluster”,随后这些二级结构靠近接触,从而形成稳定的二级结构框架;最后,二级结构框架相互拼接,肽链逐渐紧缩,形成了蛋白质的三级结构。这个模型

PNAS:新探针量化细胞内折叠和错误折叠蛋白水平

  美国Scripps研究所(TSRI)的科学家发明了一种小分子折叠探针,可在不同条件下量化细胞内正常折叠的功能性蛋白,以及疾病相关的错误折叠目的蛋白。   科学家们长期以来都需要更好的工具在细胞内进行这种测量,因为蛋白质错误折叠是组织损伤的一个主要原因。以过多蛋白错误折叠为特征的疾病,折磨着全球

包涵体蛋白溶解后的重折叠实验

实验步骤 一、常规操作方案 下面这个典型流程对许多蛋白质都有很好的效果。本 操 作 方 案 是 根 据 N g u y e n 等(1993)首先开发的方案改编而成,并用于冷泉港蛋白质纯化与鉴定课程的不溶性重组蛋白纯化部分(Bu

PNAS:揭开跨膜蛋白折叠的神秘面纱

  最近,美国莱斯大学的科学家们,以研究球状蛋白质的相同方法,成功地分析了跨膜蛋白折叠。  莱斯大学理论生物学家Peter Wolynes及其研究小组,应用他的能量全景图理论(energy landscape theory)来预测很难观察的蛋白质,因为它们主要在细胞膜内生存和起作用。他表示,该方法可

概述蛋白质复性的折叠机制

  为了有的放矢地开发辅助蛋白质复性的技术,研究工作者纷纷开展了对蛋白质折叠机制的探讨。有两种不同的假设:一种假设认为,肽链中的局部肽段先形成一些构象单元,如α螺旋、β折叠、β转角等二级结构,然后再由二级结构单元的组合、排列,形成蛋白质三级结构;另一种假设认为,首先是由肽链内部的疏水相互作用导致一个

包涵体蛋白溶解后的重折叠实验

实验步骤一、常规操作方案下面这个典型流程对许多蛋白质都有很好的效果。本 操 作 方 案 是 根 据 N g u y e n 等(1993)首先开发的方案改编而成,并用于冷泉港蛋白质纯化与鉴定课程的不溶性重组蛋白纯化部分(Burgess and K n u t h , 1996)。其他类似的流程也可能