研究发现锌转运蛋白是对抗胰腺癌的关键

一支来自密歇根州立大学(MSU)的科学家小组发现了分子机器的关键结构,一种ZIP锌转运蛋白。 密歇根州东兰辛报道称:当体内的微量元素上升到有毒水平时,就会对人体产生危害。 阿尔茨海默氏症和帕金森氏症患者的大脑中锌和铁的含量明显高于健康人。胰腺癌患者的锌转运蛋白含量异常高。因此,密歇根州立大学生物化学家Jian Hu说,控制这些微量元素的水平可能是对抗这些疾病和其他疾病的有效方式。 Hu和一组密歇根州立大学(MSU)的科学家揭示了分子机器作用机制的关键结构,一种ZIP锌转运体。将细菌的核心(另一个由Hu的实验室首先观察的核心)暴露出它的框架和机制,这些在ZIP家族中很常见,包括成千上万的金属转运蛋白。 人类基因组总共编码了14个ZIP,其中很多都与疾病有关。这一发现发表在最新一期的《科学进展》杂志上,给制药公司以测试新药的目标。 他说:“ZIP4在胰腺癌细胞中表现不佳,但在正常的胰腺组织中并不存在。因此,知道ZIP4......阅读全文

研究发现锌转运蛋白是对抗胰腺癌的关键

  一支来自密歇根州立大学(MSU)的科学家小组发现了分子机器的关键结构,一种ZIP锌转运蛋白。  密歇根州东兰辛报道称:当体内的微量元素上升到有毒水平时,就会对人体产生危害。  阿尔茨海默氏症和帕金森氏症患者的大脑中锌和铁的含量明显高于健康人。胰腺癌患者的锌转运蛋白含量异常高。因此,密歇根州立大学

研究发现锌转运蛋白是对抗胰腺癌的关键

  一支来自密歇根州立大学(MSU)的科学家小组发现了分子机器的关键结构,一种ZIP锌转运蛋白。  密歇根州东兰辛报道称:当体内的微量元素上升到有毒水平时,就会对人体产生危害。  阿尔茨海默氏症和帕金森氏症患者的大脑中锌和铁的含量明显高于健康人。胰腺癌患者的锌转运蛋白含量异常高。因此,密歇根州立大学

研究发现锌转运蛋白是对抗胰腺癌的关键

  一支来自密歇根州立大学(MSU)的科学家小组发现了分子机器的关键结构,一种ZIP锌转运蛋白。  密歇根州东兰辛报道称:当体内的微量元素上升到有毒水平时,就会对人体产生危害。  阿尔茨海默氏症和帕金森氏症患者的大脑中锌和铁的含量明显高于健康人。胰腺癌患者的锌转运蛋白含量异常高。因此,密歇根州立大学

研究发现锌转运蛋白是对抗胰腺癌的关键

  一支来自密歇根州立大学(MSU)的科学家小组发现了分子机器的关键结构,一种ZIP锌转运蛋白。  密歇根州东兰辛报道称:当体内的微量元素上升到有毒水平时,就会对人体产生危害。  阿尔茨海默氏症和帕金森氏症患者的大脑中锌和铁的含量明显高于健康人。胰腺癌患者的锌转运蛋白含量异常高。因此,密歇根州立大学

什么是转运蛋白

转运蛋白(transport proteins)是膜蛋白的一大类,介导生物膜内外的化学物质以及信号交换。脂质双分子层在细胞或细胞器周围形成了一道疏水屏障, 将其与周围环境隔绝起来。尽管有一些小分子可以直接渗透通过膜,但是大部分的亲水性化合物,如糖,氨基酸,离子,药物等等,都需要特异的转运蛋白的帮助来

转运蛋白是不是就是载体蛋白

转运蛋白:转运蛋白是膜蛋白的一大类,介导生物膜内外的化学物质以及信号交换。脂质双分子层在细胞或细胞器周围形成了一道疏水屏障, 将其与周围环境隔绝起来。尽管有一些小分子可以直接渗透通过膜,但是大部分的亲水性化合物,如糖,氨基酸,离子,药物等等,都需要特异的转运蛋白的帮助来通过疏水屏障。因此,转运蛋白在

瑞典研究揭示葡萄糖转运蛋白转运过程

  瑞典国家生命科学实验室(SciLifeLab)研究团队成功构建了迄今为止最全面的葡萄糖转运蛋白(GLUT)转运周期,并确定了GLUT蛋白对脂质的敏感性,对于理解人类生理和代谢的基本机制具有重要意义。研究成果发表在《自然》(Nature)。  碳水化合物如葡萄糖和果糖为细胞提供了重要的能量来源。细

PNAS:膜蛋白转运之谜

  膜蛋白对于细胞正常功能至关重要,但人们并不清楚这些蛋白在细胞内合成后,是如何到达膜上的特定位点的。日前,科学家们鉴定了负责膜蛋白进出的分子机器,解答了这一重要的分子生物学谜题。他们希望这一突破性成果能够最终被用于抗菌药物的设计。   Bristol大学和欧洲分子生物学实验室EMBL的研究团队,

什么是铁转运蛋白?

  铁转运蛋白属β球蛋白。是由肝脏内合成的糖蛋白,分子量约80.000。具高度多态性,目前已发现20多种不同类型的Tf。每分子Tf可结合2分子的Fe3+。铁转运蛋白的生理功能是将铁运送到需要铁的组织与细胞。每天血红蛋白分解代谢,释出25mg左右的铁。游离铁有毒性,它与Tf结合后不仅毒性降低而且还将铁

科学家揭示叶酸ECF转运蛋白结构和转运机制

  4月14日,《自然》杂志在线发表中科院上海生命科学研究院植物生理生态研究所的最新研究进展,报道了来源于乳酸杆菌的能量耦合因子型(Energy Coupling Factor,ECF)叶酸转运蛋白面向内(inward-facing)的晶体结构(见示意图a),揭示了ECF转运蛋白跨膜转运叶酸

张鹏小组首次解析叶酸转运蛋白结构与转运机制

  中科院上海生科院植物生理生态所张鹏课题组日前在《自然》杂志网络版上,首次报道了来源于乳酸杆菌的能量耦合因子型(ECF)叶酸转运蛋白面向内的晶体结构,并揭示了ECF转运蛋白跨膜转运底物的分子机制。   ECF转运蛋白复合体属于新的ABC(ATP Binding Cassette)转运蛋白家族

Nature新文章解析重要转运蛋白

  利用X射线晶体学,德克萨斯大学西南医学中心的研究人员确定了帮助维持固醇平衡的人类固醇转运蛋白的三维原子结构。这项研究发布在《自然》(Nature)杂志上。  论文的通讯作者、德克萨斯大学西南医学中心生物物理和生物化学助理教授Daniel Rosenbaum博士说:“确定这一蛋白质复合物的结构可帮

线粒体蛋白质转运的概述

  线粒体的蛋白合成能力有限,大量线粒体蛋白在细胞质中合成,定向转运到线粒体。这些蛋白质在在运输以前,以未折叠的前体形式存在,与之结合的分子伴侣(属hsp70家族)保持前体蛋白质处于非折叠状态。通常前体蛋白N端有一段信号序列称为导肽、前导肽或转运肽(leadersequence、presequenc

颜宁最新综述:聚焦转运蛋白

  近日,清华大学,清华大学-北京大学生命科学联合中心的颜宁(Nieng Yan)教授发表了一篇题为“Structural Biology of the Major Facilitator Superfamily Transporters"的综述文章,针对一个主要的次级膜转运蛋白超家族——主要协助转

葡糖转运蛋白的基本信息

中文名称葡糖转运蛋白英文名称glucose transporter定  义以葡萄糖为底物的糖转运蛋白。存在于哺乳类、酵母等细胞质膜中的一类蛋白质,其功能是通过不需消耗能量的易化扩散,加快葡萄糖进入细胞的速率。应用学科生物化学与分子生物学(一级学科),糖类(二级学科)

锌调蛋白感知锌离子的分子机制获得进展

  锌是生物体所必需的微量元素,它对很多重要蛋白的结构稳定性和催化活性至关重要。然而,过量的锌会抑制呼吸链NADH氧化酶的活性,毒害细胞。为了生存,细胞必须准确感知并严格调节锌离子在细胞内的浓度。锌调蛋白在维持细菌锌离子稳态和调控致病力过程中发挥极其重要的作用,但其感知锌离子的分子机制却一直未被解析

DNA“纳米转运蛋白”或能高效治癌

据2日发表在《自然·通讯》上的一项新研究,加拿大蒙特利尔大学研究人员设计并验证了一种由DNA制成的新型药物转运蛋白,这种分子转运蛋白大小仅为人头发宽度的两万分之一,可通过化学编程更有效地输送最佳浓度的药物,以改进癌症和其他疾病的治疗方法。 成功治疗疾病的关键是在整个治疗过程中提供并维持药物剂量。

研究揭示叶绿体蛋白转运马达新功能

  叶绿体是植物进行光合作用的细胞器。正常发育过程受到核基因组和叶绿体基因组在多个层次的协同调控。核质互作的分子机理是叶绿体生物发生的核心科学问题之一。光合膜蛋白复合体的反应中心亚基通常由叶绿体基因编码,而外周蛋白和天线蛋白由核基因组编码。这些核基因组编码的叶绿体蛋白,在细胞质中合成,而后通过叶绿体

Cell子刊:蛋白通道的转运新解

  加州理工学院的化学家首次成功模拟了一个蛋白通道的生物学功能,即允许特定蛋白通过细胞膜的过程。以往原子级别的动态模拟一般只达到纳秒水平,而他们成功进行了一分钟的原子动态模拟,详细展示了Sec易位子的作用机制。化学助理教授Thomas Miller及其研究生Bin Zhang将这项成果发表在Ce

研究揭示突触前胆碱转运蛋白CHT1转运调控机制

4月8日,中国科学院生物物理研究所赵岩研究组在国际学术期刊《自然-结构与分子生物学》上发表研究论文。该研究利用单颗粒冷冻电镜技术,首次解析了高亲和力胆碱转运蛋白CHT1(high-affinity choline transporter 1)的转运调控机制。CHT1介导的胆碱回收是乙酰胆碱合成的限速

Nature:张鹏等揭示ECF转运蛋白跨膜转运叶酸的分子机制

能量耦合因子型(ECF)叶酸转运蛋白面向内(inward-facing)的晶体结构  4月14日,中国科学院上海生命科学研究院植物生理生态研究所张鹏课题组首次解析了来源于乳酸杆菌的能量耦合因子型(Energy Coupling Factor,ECF)叶酸转运蛋白面向内(inward-facing)的

我国学者发现NRT1.1B肽转运蛋白转运硒的机理

  硒是人体必需的微量营养元素,具有抗氧化、提高免疫力、延缓衰老等多种作用。人体主要通过饮食从植物性食物尤其谷物中获取硒。水稻是世界上超过一半人口的主食,然而稻米硒含量普遍较低,难以满足人体健康对硒的需求。在稻田淹水还原条件下,水稻根系主要吸收亚硒酸盐。然而亚硒酸盐被根系吸收后大部分转化为硒代蛋氨酸

《科学》:研究阐明葡萄糖转运蛋白结构

美国和法国科学家近日研究阐明了钠依赖葡萄糖转运蛋白(SGLTs)的结构,该蛋白的作用在于将葡萄糖“泵”进细胞。这类蛋白在慢性腹泻的治疗中得到应用,每年挽救了数百万患病儿童的生命。弄清这类蛋白的结构将有助于加速一些新药的开发,用于治疗糖尿病和癌症。相关论文7月3日在线发表于《科学》(Science)杂

科学家揭示叶绿体蛋白“马达”转运机制

日前,西湖大学、西湖实验室特聘研究员闫浈团队在《细胞》上连续发表了两篇关联论文,报道了在叶绿体蛋白转运的动力机制上取得的又一重大突破——揭示了叶绿体蛋白转运的动力机制及其进化多样性,为该领域的研究开辟了新视野。模式植物拟南芥。课题组供图研究团队揭示了一种被称为“马达”的蛋白复合体,该复合体能够驱动叶

清华大学PNAS发表蛋白转运新成果

  ABC(ATP结合盒)转运蛋白是一个古老而庞大的蛋白家族,包括一百多种膜转运蛋白。这种转运蛋白广泛存在于细菌、植物和哺乳动物的各种细胞中,主要功能是利用水解ATP的能量来驱动物质跨膜运输。ABC转运蛋白参与了多种物质的转运,底物可以是离子、单糖、氨基酸、磷脂、肽、多糖和蛋白质。大部分ABC蛋白由

科学家揭示叶绿体蛋白“马达”转运机制

  日前,西湖大学、西湖实验室特聘研究员闫浈团队在《细胞》上连续发表了两篇关联论文,报道了在叶绿体蛋白转运的动力机制上取得的又一重大突破——揭示了叶绿体蛋白转运的动力机制及其进化多样性,为该领域的研究开辟了新视野。  研究团队揭示了一种被称为“马达”的蛋白复合体,该复合体能够驱动叶绿体蛋白穿过叶绿体

我国科学家破解叶绿体蛋白转运之谜

从西湖大学获悉,该校生命科学学院特聘研究员闫浈实验室的相关研究揭开了叶绿体蛋白转运之谜,其研究结果在线发表于《细胞》期刊。  “光合作用被称为地球上最重要的化学反应。”闫浈介绍,叶绿体作为光合作用的重要场地,好比一个“光能工厂”,有2000至3000种蛋白需要经过TOC-TIC复合物被识别然后进入叶

清华颜宁最新Nature文章解析转运蛋白

  来自清华大学的研究人员发表了题为“Crystal structure of the human glucose transporter GLUT1”的文章,报道了人类葡萄糖转运蛋白GLUT1的晶体结构。相关研究成果公布在Nature杂志上。  文章的通讯作者是清华大学的颜宁(Nieng Yan)

植物所揭示叶绿体蛋白转运马达新功能

叶绿体是植物进行光合作用的细胞器。正常发育过程受到核基因组和叶绿体基因组在多个层次的协同调控。核质互作的分子机理是叶绿体生物发生的核心科学问题之一。光合膜蛋白复合体的反应中心亚基通常由叶绿体基因编码,而外周蛋白和天线蛋白由核基因组编码。这些核基因组编码的叶绿体蛋白,在细胞质中合成,而后通过叶绿体被膜

青年华人博士Nature解析重要转运蛋白

  是微生物、动物和人类的重要能量来源。它们由植物所产生,通过光合作用植物将来自太阳光的能量转化为糖形式的化学能。  通过细胞膜上的一些蛋白构建出糖特异性的孔道,这些糖类被吸收到细菌、酵母、人类或植物的细胞之中。因此这些转运蛋白对于所有生物都至关重要。由于都是由它们的细菌祖先进化而来,人类和植物的转