Nature新文章解析重要转运蛋白
利用X射线晶体学,德克萨斯大学西南医学中心的研究人员确定了帮助维持固醇平衡的人类固醇转运蛋白的三维原子结构。这项研究发布在《自然》(Nature)杂志上。 论文的通讯作者、德克萨斯大学西南医学中心生物物理和生物化学助理教授Daniel Rosenbaum博士说:“确定这一蛋白质复合物的结构可帮助我们了解两个组件蛋白协同作用将固醇清除出机体的机制。这一知识转而可能促使找到一些高度 靶向性疗法来治疗或预防与固醇失衡相关的疾病。” 胆固醇是细胞膜的重要组成成分。两个ATP结合盒(ABC)半转运蛋白ABCG5和ABCG8形成了一种复合物跨膜转运固醇。 具体而言,ABCG5/ABCG8复合物参与了肝脏和肠道排泄固醇。突变破坏任一蛋白均可导致谷固醇血症(sitosterolemia)。Rosenbaum博士说,罹患谷固醇血症的患者组织和血液中胆固醇和其他固醇类水平升高,可在早年引起心脏病发作。 在正常情况下,动物通过限制肠道摄取......阅读全文
X射线晶体学的研究步骤
①蛋白或DNA样品纯化②结晶③衍射、数据收集④确定蛋白结构衍射数据→数据处理→相位解析→建模→模型修正→模型检验⑤理解结构与功能的相互关系
X射线晶体学的原理和方法
原理:蛋白质晶体内部结构为三维空间周期、有序、重复排列,要求每个结晶重复单位(分子或其复合体)的化学组成与分子构象是均一的。方法:为了获得可供衍射的单晶,就需要将纯化后的生物样品进行晶体生长。晶体生长的方法有很多,如气相扩散法、液相扩散法、温度渐变法、真空升华法、对流法等等,而目前应用最广泛的晶体生
X射线晶体学的研究对象和目的
X射线晶体学是一门利用X射线来研究晶体中原子排列的学科。更准确地说,利用电子对X射线的散射作用,X射线晶体学可以获得晶体中电子密度的分布情况,再从中分析获得原子的位置信息,即晶体结构。对很多余结构相关的问题如整体折叠、配体或底物结合、作用的原子具体信息提供可靠的答案。运用X射线晶体学可以了解大分子如
X射线晶体学揭示代谢调控新机制
来自普渡大学、霍华德休斯医学研究所的研究人员,运用X射线晶体学方法,揭示了大肠杆菌抑制麦芽糖转运蛋白摄入麦芽糖的机制,相关论文公布在6月16日的《自然》(Nature)杂志上。 领导这一研究的是普渡大学生物学系陈觉(Jue Chen)教授,其早年毕业于上海同济大学,2002年受聘于普渡
-窥探原子结构秘密-晶体学一百年
随着技术进步,发现的步伐也在加速:每年数以万计的新结构留下影像。 1914年,德国科学家Max von Laue因发现晶体如何衍射X射线而摘得诺贝尔物理学奖桂冠,这一发现直接推动了X射线晶体学的出现。从那时以来,研究人员利用衍射推算出了越来越多复杂分子的晶体结构,从简单矿物到
X射线晶体学的多重同晶置换(MIR)概念
把对X射线散射能力大的重金属原子作为标识原子。这种置换入重原子的大分子应与无重原子时的原晶体有相同的晶胞参数和空间群,且绝大多数原子的位置相同,故称同晶置换。从这些含重原子晶体的衍射数据,利用基于派特逊法的方法可解出重原子的位置,据此算出其结构因子和相角,进而利用相角关系计算出没有重原子的原晶体的相
X射线晶体学的多波长反常散射(MAD)概念
晶体衍射中有一条弗里德耳定律, 就是说不论晶体中是否存在对称中心,在晶体衍射中总存在着对称中心,也即有FHKL=FHKL。但是当使用的X射线波长与待测样品中某一元素的吸收边靠近时,就不遵从上述定律,也即FHKL≠FHKL。这是由电子的反常散射造成的, 利用这一现象可以解决待测物的相角问题。 一般,
X-射线晶体学与冷冻电镜在结构生物学上如何互补?
小刘同学的故事好感慨的题目,基本上就是小刘同学大学生活的变迁2012年,小刘同学刚刚结束了高考。满怀对生命科学的憧憬,心想,二十一世纪是生命科学的世纪。他现在也这样觉得。于是背上小小的行囊,告别了家乡和爹娘;只身来到了帝都,前去某知名985高校学一门手艺。希望能功成名就,回老家盖房子,娶媳妇。小刘同
通过X射线晶体学确定甜叶菊莱鲍迪甙A(RebA)蛋白的结构
6月10日发表在《美国科学院院刊(PNAS)》上的一项研究,揭示了甜叶菊高强度甜味背后的分子机制,研究结果可用于设计新的无热量产品,且不含任何不良余味。该研究由美国华盛顿大学圣路易斯分校领导。 尽管负责甜叶菊合成生化途径中的基因和蛋白质几乎已完全为人所知,但根据这项新研究的作者称,这是首次发表
X射线晶体学之常见问题-蛋白糖基化修饰影响蛋白结晶?
1. 蛋白质修饰如糖基化会不会影响蛋白结晶? 在蛋白结晶过程中,糖基化一般被认为会影响蛋白的均一性和表面熵,从而阻碍蛋白结晶。但是也有实验表明糖基化不会影响蛋白质结晶(10.1021/cg7006843),应该无差别对待。如果糖基化蛋白不能形成晶体,那么就应该尝试将糖链给去掉。有好几种方法可以
X射线荧光(XRF):理解特征X射线
什么是XRF? X射线荧光定义:由高能X射线或伽马射线轰击激发材料所发出次级(或荧光)X射线。这种现象广泛应用于元素分析。 XRF如何工作? 当高能光子(X射线或伽马射线)被原子吸收,内层电子被激发出来,变成“光电子”,形成空穴,原子处于激发态。外层电子向内层跃迁,发射出能量等于两级能
软X射线源上X射线能谱与X射线能量的测量
本文介绍了国内首次利用针孔透射光栅谱仪对金属等离子体Z箍缩X射线源能谱的测量结果及数据处理方法。同时用量热计对该源的单脉冲X射线能量进行了测量并讨论了其结果。
X射线管中X射线的产生原理
实验室中X射线由X射线管产生,X射线管是具有阴极和阳极的真空管,阴极用钨丝制成,通电后可发射热电子,阳极(就称靶极)用高熔点金属制成(一般用钨,用于晶体结构分析的X射线管还可用铁、铜、镍等材料).用几万伏至几十万伏的高压加速电子,电子束轰击靶极,X射线从靶极发出.
X射线散射
美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到
X-射线激光
X 射线激光指的是 XFEL (x-ray free-electron laser),X 射线自由电子激光。而这种激光,是将自由电子激光技术(FEL)产生的激光,拓展到 X 射线范围内而产生的一种 X 射线激光。这种激光的强度可达传统方法产生的激光亮度的十亿倍,因此可让较小晶体产生出足够强的衍射图样
X射线光谱
1914年,英国物理学家莫塞莱(Henry Moseley,1887-1915)用布拉格X射线光谱仪研究不同元素的X射线,取得了重大成果。莫塞莱发现,以不同元素作为产生X射线的靶时,所产生的特征X射线的波长不同。他把各种元素按所产生的特征X射线的波长排列后,发现其次序与元素周期表中的次序一致,他称这
X射线原理
X射线定义X射线是由于原子中的电子在能量相差悬殊的两个能级之间的跃迁而产生的粒子流,是波长介于紫外线和γ射线之间的电磁波。其波长很短约介于0.01~100埃之间。X射线具有很高的穿透本领,能透过许多对可见光不透明的物质,如墨纸、木料等。这种肉眼看不见的射线可以使很多固体材料发生可见的荧光,使照相底片
X射线治疗
X射线应用于治疗[7],主要依据其生物效应,应用不同能量的X射线对人体病灶部分的细胞组织进行照射时,即可使被照射的细胞组织受到破坏或抑制,从而达到对某些疾病,特别是肿瘤的治疗目的。
X射线诊断
X射线应用于医学诊断[6],主要依据X射线的穿透作用、差别吸收、感光作用和荧光作用。由于X射线穿过人体时,受到不同程度的吸收,如骨骼吸收的X射线量比肌肉吸收的量要多,那么通过人体后的X射线量就不一样,这样便携带了人体各部密度分布的信息,在荧光屏上或摄影胶片上引起的荧光作用或感光作用的强弱就有较大
施一公Cell综述:X射线晶体学技术和结构生物学的历史与现状
X射线晶体学技术是人们了解原子世界的利器,人们通过这一技术获得了许多重要的生物学结构。在晶体学技术百年诞辰之际,Cell杂志发表了清华大学施一公教授的前沿文章。这篇综述性文章全面介绍了X射线晶体学技术和结构生物学的历史和现状,读者现在可以在Cell网站免费获取全文。 1914年,德国科学家Ma
质子激发X射线荧光分析的X-射线谱
在质子X 射线荧光分析中所测得的X 射线谱是由连续本底谱和特征X 射线谱合成的叠加谱。样品中一般含有多种元素,各元素都发射一组特征X 射线谱,能量相同或相近的谱峰叠加在一起,直观辨认谱峰相当困难,需要通过复杂的数学处理来分解X 射线谱。解谱包括本底的扣除、谱的平滑处理、找峰和定峰位、求峰的半高宽
x射线衍射仪和x射线机有什么不同
X射线衍射仪和X射线机有什么不同我觉得X射线机是用来照射X光线X射线衍射线一他是用来衍射的他俩不同
什么是连续X射线和特征X射线谱
连续X射线,是电子跑着跑着突然被原子核拉住,能量没地儿放,于是放出X射线,这里放出的能量是连续的。特征X射线是处于特定能级的电子吸收光子,处于激发态,跑到低能级上放出的能量,故是一份一份的,具有明显衍射峰。介绍阴极射线的电子流轰击到靶面,如果能量足够高,靶内一些原子的内层电子会被轰出,使原子处于能级
X射线机重过滤X射线能谱的测量
本文报道了用 NaI(Tl)闪烁谱仪对国产 F34-Ⅰ型 X 射线机的重过滤 X 射线能谱的测量和解谱方法,给出一组测量结果,并对测量结果进行了比较和讨论。
高频X射线机和工频X射线机的区别
高频机与工频机的不同 高频机是指高压发生器的工作频率大于20kHz的X线机,工频机是指高压发生器的工作频率小于400Hz的X线机。工频机将50Hz的工频电源升高压整流后有100Hz的正弦纹波,经滤波后仍有10%以上的纹波,高频机工作频率高,高压整流后的电压基本上是恒定的直流,纹波可小于0.1%
X射线与γ射线的相关介绍
X射线是带电粒子与物质交互作用产生的高能光量子。 X射线与γ射线有许多类似的特性,但它们起源不同。 X射线由原子外部引起,而γ射线由原子内部引起。X射线比γ射线能量低,因此穿透力小于γ射线。成千上万台X射线机在日常中被运用于医学和工业上。X射线也被用于癌症治疗中破坏癌变细胞,由于它的广泛运用
X射线测厚仪与γ射线测厚仪比较
X射线测厚仪与γ射线测厚仪比较 (1)物理特性 X射线束能缩减为很小的一点,其结构几何形状不受限制,而γ射线则不能做到,因此光子强度会急骤减少以致噪音大幅度增加。 (2)信号/噪音比 X射线测厚仪:X射线的高光子输出,能带来比γ射线在相同时间常数下约好10倍的噪音系数。 (3)反应时间
X射线的产生
电子的韧制辐射,用高能电子轰击金属,电子在打进金属的过程中急剧减速,按照电磁学,有加速的带电粒子会辐射电磁波,如果电子能量很大,比如上万电子伏,就可以产生x射线,这是目前实验室和工厂,医院等地方用的产生x射线的方法。 原子的内层电子跃迁也可以产生x射线,量子力学的理论,电子从高能级往低能级跃迁
X-射线能谱
X 射线能谱( Energy-dispersive X-ray spectroscopy, EDS)是微区成分分析最为常用的一种方法,其物理基础是基于样品的特征 X 射线。当样品原子内层电子被入射电子激发或电离时,会在内层电子处产生一个空缺,原子处于能量较高的激发状态,此时外层电子将向内层跃迁以填补
X射线衍射仪
特征X射线及其衍射X射线是一种波长(0.06-20nm)很短的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相机乳胶感光、气体电离。用高能电子束轰击金属靶产生X射线,它具有靶中元素相对应的特定波长,称为特征X射线。如铜靶对应的X射线波长为0.154056 nm。X射线衍射仪的英文名称是X-ra