Nature:揭示人体最为常见的DNA突变如何发生
变形器(shape-shifter)并不仅是科幻的东西,它们是真实的,而且它们存在于我们的DNA中。 在一项新的研究中,研究人员描述了人类DNA中的两个通常不匹配的碱基---鸟嘌呤(G)和胸腺嘧啶(T)---如何能够改变形状,从而在DNA螺旋“梯子”上形成一个不显眼的横档。这允许它们通过躲避身体对基因突变的天然防御而存活下来。相关研究结果于2018年1月31日在线发表在Nature期刊上,论文标题为“Dynamic basis for dG•dT misincorporation via tautomerization and ionization”。图片来自CC0 Public Domain 论文共同通信作者、俄亥俄州立大学化学与生物化学教授ZucaiSuo解释道,“当这两个碱基偶然形成氢键时,它们起初匹配得并不很好。它们从DNA螺旋上突出来,因此在正常情形下,用于复制DNA的酶很容易检测到它们并进行修复。但是有时,在......阅读全文
基因编辑大牛Nature子刊发文:CRISPR单碱基编辑准确!
来自韩国基础科学研究所IBS的研究人员发表了题为“Genome-wide target specificities of CRISPR RNA-guided programmable deaminases”的文章,证实了最近研发的基因编辑方法的准确性。这一研究成果公布在4月10日的Nature
Nature-:突变速度差异的分析
为了弄清为什么突变速度在基因组内是有差异的,Laurence Hurst及同事采用一个亲子测序方法对拟南芥、水稻和蜜蜂的突变速度在基因组内的差异直接进行了研究。他们发现,突变速度在杂合子中和在接近交叉事件的地方较高。突变在杂合区域要比在纯合区域出现得更为频繁(频繁程度不成比例),正在进行纯化选
David-Liu首次通过AAV病毒载体在动物体内进行碱基编辑作用
碱基编辑器用于研究和治疗遗传性疾病的成功取决于将其体内传递给相关细胞类型的能力。通过腺相关病毒(AAV)的传送受AAV打包能力的限制(AAV的基因组包装大小限制为≤5kb),因此无法使用全长碱基编辑器。 2020年1月14日,博德研究所David Liu团队在Nature Biomedical
Nature解析癌症与“垃圾”DNA
癌症是由多次遗传改变(或突变)而引起的一类疾病。我们从父母那里继承了或强或弱的形成某些癌症类型的遗传易感性;此外,在我们的一生中我们的细胞内也会不断地累积新的突变。尽管已开展了很长一段时间的癌症遗传起源研究,直到现在研究人员仍无法估量基因组一些非编码区域的作用。 来自日内瓦大学(UNIGE)的
Nature:被丢失的“垃圾”DNA
在人类基因组中,基因只占据2%的序列,其余的均是由称作非编码DNA的遗传物质构成。科学家们多年来一直试图解开这一谜团:为何基因组中会存在如此庞大数量的这种遗传物质? 现在,一项新研究带来了出乎意料的新发现:绝大多数的非编码DNA也许确实并非复杂生命所需。这一研究发表在 5月12日的《自然》(N
作物基因组单碱基编辑方法研究取得进展
单核苷酸点突变是作物许多重要农艺性状发生变异的遗传基础。单碱基的变异会导致氨基酸替换或蛋白质翻译终止,使基因功能发生改变,从而有可能产生优良的等位基因与优异性状。传统诱变及单碱基突变筛选技术(如TILLING)需要进行基因组规模的筛选,耗时、耗力且鉴定到的点突变数目和种类有限。基因组编辑技术,特
遗传发育所在作物基因组单碱基编辑方法研究中取得进展
单核苷酸点突变是作物许多重要农艺性状发生变异的遗传基础。单碱基的变异会导致氨基酸替换或蛋白质翻译终止,使基因功能发生改变,从而有可能产生优良的等位基因与优异性状。传统诱变及单碱基突变筛选技术(如TILLING)需要进行基因组规模的筛选,耗时、耗力且鉴定到的点突变数目和种类有限。基因组编辑技术,特
Science重要成果揭示遗传学基本规则
生物通报道:人们往往将突变视为引发疾病的基因错误。其实并非所有突变都有害,有些突变甚至能抵消或抑制致病突变的危害。不过,科学家们对这种基因抑制(genetic suppression)机制还知之甚少。多伦多大学的研究人员首次对细胞中的抑制突变进行了全面分析,揭示了基因抑制的基本规则。相关论文于十
追问生物学本源问题:最常见的DNA突变是如何发生的?
变形怪(Shape-shifters)并不仅仅是虚构的,其实它们是真实存在的,就在我们体内的DNA里。 杜克大学,俄亥俄州立大学的一组研究人员揭示了人类DNA中鸟嘌呤和胸腺嘧啶中两个通常不匹配的碱基是如何改变形状,在螺旋DNA“阶梯”上形成一个不显眼的环,从而能够避开我们体内针对基因突变的天然
中国科学家运用碱基编辑技术修正胚胎基因突变
广州中山大学的研究人员运用碱基编辑技术(base editing)纠正了组成人类基因 30 亿个密码排列中的一个错误。 他们用这种方法对胚胎的基因进行改变处理,排除了可以导致 β -地中海贫血疾病的错误。但该胚胎并没有被植入人体,它只供试验室使用。研究人员说这项技术将来可以用于治
最新研究可检测癌症组织中的基因融合和碱基突变
靶向治疗和免疫检查点抑制剂治疗目前已显著改善了肿瘤患者的生存率,而新型疗法的有效运用往往需要依赖于对基因变异的准确检测。当前的研究表明,诸如NTRK(神经营养因子受体酪氨酸激酶)等罕见的融合变异事件能有效地驱动肿瘤发生,并成为多种肿瘤中靶向治疗的靶标。基于DNA检测的大Panel可以覆盖几百个
按试剂碱基添加方式分类DNA合成仪的分类简介
1,电磁阀气动驱动型:采用高于大气压的惰性气体(氩气,氮气或氦气)为碱基试剂溶液的驱动方式,通过微量电磁阀的开合添加试剂或碱基溶液。主要品牌包括ABI系列合成仪,oligomaker系列合成仪,biolytic系列合成仪,GE系列合成仪及mermade系列DNA合成仪等。 2,采用蠕动泵驱动型
三篇Nature文章揭示CRISPR/Cas9基因组编辑取得重大进展
大多数人类遗传病是由于点突变---DNA序列上的单个碱基错误---导致的。然而,当前的基因组编辑方法不能够高效地校正细胞中的这些突变,而且经常导致随机的核苷酸插入或删除(insertions or deletion, indel)。 如今,在一项新的研究中,来自美国哈佛大学的研究人员对CRIS
细胞化学词汇DNA突变子
一个顺反子内任何一突变位点,发生变化产生突变表型,即一个基因内产生突变表型的最小单位。
细胞化学词汇DNA突变体
发生突变的个体叫做突变体。突变体往往具有与野生型不同的表型,这样就为缺失组分的功能提供了有益的信息。同样,会将含有某一组分过量表达的个体也称为突变体。
DNA突变按照基因结构改变分类
小规模突变小规模突变影响基因中的一个或几个核苷酸 (只影响到一个核苷酸的突变称为点突变)。小规模突变包括:插入:将一个或多个额外的核苷酸添加到DNA中。它们通常由转座因子引起,或由重复元件错误复制所致。位于基因编码区的插入可改变mRNA的剪接(剪接位点突变)或引起阅读框架的移位(移码),这两者都可显
PNAS、Nature共造基因测序新方法,不“放过”任何碱基
日前,来自哥伦比亚大学、哈弗大学及美国国家标准技术局的研究人员报道了使用蛋白纳米孔阵列实现了单碱基分辨率的实时单分子电子DNA测序,相关结果以《Real-Time Single Molecule Electronic DNA Sequencing by Synthesis Using Polym
《Nature》子刊:新CRISPR技术-轻松实现单碱基精确基因敲除
CRISPR-Cas9系统为研究者提供了精准编辑DNA的技术手段,如今,研究人员又利用它开发出了靶向酿酒酵母(S. cerevisiae)单基因的技术,研究人员通过删除DNA序列中1个碱基即可关闭基因。这种基因组级别的生物工程与传统的靶向单个基因或有限数量基因的策略相比,未来将更方便研究者独立研
Nature发布CRISPR/Cas9系统应用新突破
来自洛克菲勒大学的研究人员报告称,他们利用CRISPR/Cas9成功地有效引入了特异的纯合子和杂合子突变。这一突破性的成果发布在4月27日的《自然》(Nature)杂志上。 细菌CRISPR/Cas9系统使得人们能够在许多生物中实现序列特异性的基因编辑,有望成为在人类多能干细胞中建立人类疾病模
杨辉组/高彩霞组发现单碱基编辑系统存在严重脱靶效应
2016年,David Liu团队在 Nature 期刊上首次报道了基于胞嘧啶脱氨酶APOBEC1(能催化C脱氨基变成U,而U在DNA复制过程中会被识别成T)和尿嘧啶糖基化酶抑制剂UGI(能防止尿嘧啶糖基化酶将U糖基化引起碱基切除修复)的单碱基编辑工具(BE3)首次实现可以在不引入DNA双链断裂
生物物理所等研究团队实现精准修正胶质瘤致癌基因突变
胶质瘤(Glioblastoma, GBM))是一种严重威胁人类健康的脑部恶性肿瘤,目前尚缺乏有效的防治手段,以往的研究报道83%原发性胶质瘤携带端粒酶基因(TERT)启动子区域的致癌突变(Killela PJ, et al.PNAS 2013, PMID: 23530248),该突变重新激活端
科研人员实现精准修正胶质瘤致癌基因突变
胶质瘤(Glioblastoma, GBM))是一种严重威胁人类健康的脑部恶性肿瘤,目前尚缺乏有效的防治手段,以往的研究报道83%原发性胶质瘤携带端粒酶基因(TERT)启动子区域的致癌突变(Killela PJ, et al.PNAS 2013, PMID: 23530248),该突变重新激活端
Nature首次找到成癌疾病遗传突变
科学家们首次识别出了一种易于发展成世界上最常见癌症的疾病:巴氏食道症(Barrett"s esophagus)的遗传突变,研究人员发现这些突变区域出现在两条染色体上,这将有助于研发高风险人群的筛选方法。 虽然之前科学家们就认为这一疾病可能具有遗传的和环境的原因,如饮酒和吃高脂肪的食物,
Nature:建立摧毁突变HIV的免疫军队
将潜伏的HIV病毒从藏身之处引出,摧毁其对治疗最后的顽强抵抗是根除HIV的终极目标,但近期对此做出的一些尝试均以失败告终。现在,由约翰霍普金斯大学领导的一项新研究的结果揭示出了背后的原因,并提出了新的策略,这有可能为开发出一种治疗性疫苗根除身体中留滞难去的病毒绘制出了一张蓝图。 这些发表在1月
Nature:DNA复制过程的关键奥秘
最近,沙特国王科技大学(King Abdullah University of Science and Technology,KAUST)的研究人员,揭开了DNA复制过程中的一个关键奥秘。相关研究结果发表在最近的国际顶级学术刊物《Nature》。 在一个细菌分裂之前,它必须通过一个称为DNA复
Nature子刊:DNA“笼子”的妙用
来自麦吉尔大学的研究人员在最新一项研究中指出,DNA链制成的纳米结构可以用于封装小分子药物,并在特定的刺激下释放药物,这一研究成果公布在9月1日的Nature Chemistry杂志上。 这项研究将有助于生物纳米结构在药物递送方面的应用,也将为设计以DNA为基础的纳米材料开辟新的道路。
潘学文博士Nature解析DNA修复
生物通报道:来自贝勒医学院的研究人员指出了一种核小体重构因子:Fun30在DNA双链端粒末端切除过程中扮演的重要角色,为进一步解析DNA双链断裂修复过程提供了新思路,相关成果公布在Nature杂志上。 文章的通讯作者之一是华裔科学家潘学文博士(Xuewen Pan,生物通音译),其早年
新培育:单碱基突变的遗传性疾病动物模型
近日吉林大学动物医学学院赖良学团队利用新型单碱基编辑系统成功对家兔实现单碱基精确突变,培育出具有白化病、早衰症等遗传性疾病模型兔,这代表人类距离基因治疗时代更近一步。 团队成员、吉林大学动物医学学院博士李占军介绍,白化病、早衰症等遗传性疾病都是由于基因组发生单碱基突变所致。由于遗传性疾病产生的
碱基突变对多肽链中氨基酸序列的影响类型
同义突变同义突变(same sense mutation):碱基置换后,虽然每个密码子变成了另一个密码子,但由于密码子的简并性,因而改变前、后密码子所编码的氨基酸不变,故实际上不会发生突变效应。例如,DNA分子模板链中GCG的第三位G被A取代,变为GCA,则mRNA中相应的密码子CGC就变为CGU,
DNA测序概念再升级:新方法每秒识别660亿碱基
DNA测序经历了Sanger测序、二代测序(高通量测序)及三代测序(纳米孔测序),日前,美国国家标准与技术研究所(NIST)模拟了一个新型基因测序概念:通过将DNA分子从微小的、具有化学活性的石墨孔洞中拉动,通过测量石墨孔洞边缘产生的电位变化来实现高速、高精度、高效率的DNA测序;研究人员表明,