电镜在碳纳米管表征中的应用
1991年,饭岛在Nature上发表的碳纳米管的论文,不但在电镜中观察到直径为1nm的管子,并给出合理解释。在这后,Nature连续发表了饭岛的六篇有关纳米碳管的论文。之后,由于碳纳米管具有特殊的导电性能和机械性能,吸引着科学界广泛的兴趣和研究,碳纳米管在高强度纤维材料、复合材料以及纳米电子器件等方面具有广阔应用前景。目前表征碳纳米管的纳米结构和形貌的手段非常有限,除了STM,XPS,XRD,Raman光谱等手段外,无疑电镜在碳纳米管的表征中也占有非常重要的地位。因为目前透射电镜的最高点分辨率已接近0.12nm,已经达到分辨单个原子的水平(较小的轻元素除外),扫描电镜的二次电子像的分辨率也已达到3-4nm的水平。为此,本文首先总结碳纳米管的结构特点,接着对透射电子显微镜、扫描电子显微镜在碳纳米管的结构和形貌表征中的应用作了简要的概述。一、碳纳米管的结构及其透射电镜表征&nbs......阅读全文
扫描电镜介绍
扫描电镜全称为扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器。由于它具有制样简单、放大倍数可调范围宽、图像的分辨率高、景深大等特点,故被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。 扫描电镜的制造是依据电子与
扫描电镜“弱视”,
对材料微观结构的观测离不开“微观相机”——扫描电子显微镜,一种高端的电子光学仪器,它被广泛地应用于材料、生物、医学、冶金、化学和半导体等各个研究领域和工业部门。 “比如,在材料科学领域,它是非常基础的科研仪器,毫不夸张地说,材料领域70%—80%的文章都要用到扫描电镜提供的信息。”中国科学院上
扫描电镜介绍
扫描电镜全称为扫描电子显微镜,是自上世纪60年代作为商用电镜面世以来迅速发展起来的一种新型的电子光学仪器。由于它具有制样简单、放大倍数可调范围宽、图像的分辨率高、景深大等特点,故被广泛地应用于化学、生物、医学、冶金、材料、半导体制造、微电路检查等各个研究领域和工业部门。 扫描电镜的制造是依据电子
酶免疫电镜试剂
1.PBS液 取NaCl 8.5g,Na2HPO40.85g,KH2PO40.54g,加水至1 000ml即可。 2.DAB溶液 取5mgDAB(3、3二氨基联苯胺)加入10mlTris-HCl缓冲液(0.05mMol/L pH 7.6),加1%H2O20.5ml~1ml。配制时,避光进行,
酶免疫电镜技术
(一) 原理 酶免疫电镜技术是利用酶的高效率的催化作用对其底物的反应形成不同的电子密度,借助于电子显微镜观察,证明酶的存在,从而对抗原进行定位。(二)材料与试剂1.PBS液 取NaCl 8.5g,Na2HPO40.85g,KH2PO40.54g,加水至1 000ml即可。2.DAB溶液 取5m
冷冻电镜成像
冷冻电镜成像冷冻的样品冷冻输送器转移到电镜的样品室,在电镜成像之前,需确认样品中的水处于玻璃态。由于生物样品对高能电子的辐射敏感,成像时必须使用低剂量技术(
酶免疫电镜试剂
1.PBS液 取NaCl 8.5g,Na2HPO40.85g,KH2PO40.54g,加水至1 000ml即可。 2.DAB溶液 取5mgDAB(3、3二氨基联苯胺)加入10mlTris-HCl缓冲液(0.05mMol/L pH 7.6),加1%H2O20.5ml~1ml。配制时,避光进行
冷冻电镜原理
冷冻电镜原理冷冻电子显微学解析生物大分子及细胞结构的核心是透射电子显微镜成像,其基本过程包括样品制备、电子显微镜成像、图像处理及结构解析等几个基本步骤。冷冻电镜解析结构步骤 图片来源:中科院计算所透射电子显微镜成像过程中,电子束穿透样品,将样品的三维电势密度分布函数沿着电子束的传播方向投影至与传播
冷冻电镜原理
冷冻电镜原理冷冻电子显微学解析生物大分子及细胞结构的核心是透射电子显微镜成像,其基本过程包括样品制备、透射电子显微镜成像、图像处理及结构解析等几个基本步骤(图3.1)。在透射电子显微镜成像中,电子枪产生的电子在高压电场中被加速至亚光速并在高真空的显微镜内部运动,根据高速运动的电子在磁场中发生偏转的原
高分辨电镜(HREM)
高分辨电镜(HREM) 提高加速电压,使电子波长更短,能提高分辨本领。由于技术上的难度高,所以至70年代初超高压电镜主要针对提高穿透率。70年代末至80年代初技术上的提高带来了200 kV、300 kV的高分辨商品电镜及个别500 kV、600 kV和1000 kV的HREM。分辨本领能达2 ?左右
冷冻电镜分类
冷冻电镜分类目前我们讨论的冷冻电镜基本上指的都是冷冻透射电子显微镜,但是如果我们以使用冷冻技术的角度定义冷冻电镜的话,冷冻电镜主要可以分为冷冻透射电子显微镜、冷冻扫描电子显微镜、冷冻蚀刻电子显微镜。 冷冻透射电子显微镜冷冻透射电镜(Cryo-TEM)通常是在普通透射电镜上加装样品冷冻设备,将样品冷却
冷冻电镜研究
在低温下使用透射电子显微镜观察样品的显微技术,就叫做冷冻电子显微镜技术,简称冷冻电镜(cryo-electron microscopy, cryo-EM)。冷冻电镜是重要的结构生物学研究方法,它与另外两种技术:X射线晶体学(X-ray crystallography)和核磁共振(nuclear ma
电镜法粒度分析
优点是可以提供颗粒大小,分布以及形状的数据。此外,一般测量颗粒的大小可以从1纳米到几个微米数量级。并且给的是颗粒图像的直观数据,容易理解。但其缺点是样品制备过程会对结果产生严重影响,如样品制备的分散性,直接会影响电镜观察质量和分析结果。电镜取样量少,会产生取样过程的非代表性。适合电镜法粒度分析的仪器
冷冻蚀刻电镜技术
冻蚀刻(Freezeetching)技术是从50年代开始发展起来的一种将断裂和复型相结合的制备透射电镜样品技术,亦称冷冻断裂(Freezefracture)或冷冻复型(Freezereplica),用于细胞生物学等领域的显微结构研究。
扫描免疫电镜技术
实验概要本文介绍了扫描免疫电镜技术的具体操作步骤,扫描免疫电镜技术可为研究细胞或组织表面的三维结构与抗原组成的关系提供可能性。实验原理免疫电镜技术是免疫化学技术与电镜技术结合的产物,是在超微结构水平研究和观察抗原、抗体结合定位的一种方法学。它主要分为两大类:一类是免疫凝集电镜技术,即采用抗原抗体凝集
扫描免疫电镜技术
实验概要本文介绍了扫描免疫电镜技术的具体操作步骤,扫描免疫电镜技术可为研究细胞或组织表面的三维结构与抗原组成的关系提供可能性。实验原理免疫电镜技术是免疫化学技术与电镜技术结合的产物,是在超微结构水平研究和观察抗原、抗体结合定位的一种方法学。它主要分为两大类:一类是免疫凝集电镜技术,即采用抗原抗体凝集
扫描电镜原理
扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国首先制成一台实验室用的扫描电镜,但由于成像的分辨率很差,照相时间太长,所以实用价值不大。经过各国科学工作者的努力,尤其是随着电子工业技术水平的不断发展,到1956年开始生产商品扫描电镜。近数十年来,扫描电镜已广泛地应
扫描电镜简介
扫描电子显微镜 (scanning electron microscope, SEM) 是一种用于高分辨率微区形貌分析的大型精密仪器。具有景深大、分辨率高, 成像直观、立体感强、放大倍数范围宽以及待测样品可在三维空间内进行旋转和倾斜等特点。另外具有可测样品种类丰富, 几乎不损伤和污染原始样品以及
扫描电镜组成
仪器的组成 1、 扫描电镜的组成 扫描电子显微镜由电子光学系统、信号检测和放大系统、扫描系统、图像显示和记录系统、电源系统和真空—冷却水系统组成。 2、 X射线能谱仪的仪器结构 X射线能谱仪由半导体探测器、前置放大器、主放大器、脉冲堆积排除器、模拟识数字转换器、多道分析器、计算
电镜ceta是什么
电镜ceta是扫描电镜和能谱分析仪,电镜ceta能谱分析仪包含两台仪器,即扫描电镜和能谱分析仪,扫描电镜简写为SEM,其原理是利用聚焦得非常细的高能电子束在试样上扫描,激发出各种物理信息,通过对这些信息的接受、放大和显示成像,获得测试试样表面形貌的图像。
电镜用盖玻片
盖玻片是透明材料的薄且平的玻璃片,通常为方形或矩形,宽约20毫米(4/5英寸),厚为几分之一毫米,放置在用显微镜观察的物体上。物体通常放置在盖玻片和稍微较厚的显微镜载玻片之间,显微镜载玻片放置在显微镜的平台或滑块架上,并为物体和滑动提供物理支撑。
球差电镜分析
1 球差电镜的原理 球差是像差的一种,是影响TEM分辨率的主要原因之一。由于像差(球差、像散、彗形像差和色差)的存在,无论是光学透镜还是电磁透镜,其透镜系统都无法做到完美。光学透镜中,可通过将凸透镜和凹透镜组合使用来减少由凸透镜边缘汇聚能力强中心汇聚能力弱所致的所有的光线(电子)无法汇聚到
纤维状碳纳米管电池可织成“能源衣”
若从最近谷歌眼镜(Google Glass)的新品发布和苹果iWatch智能腕表即将上市的种种迹象来看,可穿戴电子产品将可能掀起下一个新科技浪潮。为了解决这类产品的电力供应问题,中国上海复旦大学的研究人员首次制备出基于碳纳米管(CNT)的纤维状全锂离子电池,可被灵活地编织成具有高性能的柔性能源纺
我学者首次构建出锯齿型碳纳米管片段
从中国科学技术大学获悉,该校杜平武教授课题组利用一种新策略,首次构建出锯齿型碳纳米管片段。 碳纳米管是一种纳米材料,重量轻,六边形结构连接完美,组成碳纳米管的C=C共价键是自然界中最稳定的化学键之一,但是合成长度和尺寸单一的碳纳米管是合成化学和材料化学的一个重要挑战。 从精确结构控制的角
碳纳米管连接神经元,修复受损脊髓
科学家们已经在用碳纳米管控制神经元生长并修复神经细胞之间的电子连接了。并且他们已经证明碳纳米管能够安全地用于神经元修复,希望碳纳米管也能恢复脊髓受损的人的神经功能。这种结合碳纳米管的修复神经元方法带来了意料之外的益处。 碳纳米管具有一些优异性质,比如出色的导热性、机械强度和导电性,可以用来制造
碳纳米管晶体管极具抗辐射能力
美国海军研究实验室电子科技工程师18日表示,他们发现由单壁碳纳米管制作的晶体管(SWCNT)具有在苛刻太空环境中生存的能力。目前他们正在研究电离子辐射对晶体结构的影响,以及支持开发以SWCNT为基础的用于太空辐射环境的纳米电子设备。 实验室材料研究工程师科里·克瑞斯表示,环绕地球外围的电粒
中国将主导全球碳纳米管与石墨烯制造
根据市场研究公司LuxResearch表示,随着中国企业加入全球供过于求的碳奈米管(CNT)与石墨烯市场,中国已在碳奈米管与石墨烯的研究与制造方面取得领先优势,从而带动了价格下滑以及造成利润侵蚀,甚至可能导致这一兴起中的产业重新洗牌。 LuxResearch分析师ZhunMa在最近发布一份有
金属所高性能碳纳米管纤维研究获进展
理论研究表明,高致密度且沿轴向高度顺排的碳纳米管纤维可具有高于商用碳纤维的强韧性和高于传统金属导线的比电导率。单根碳纳米管的直径为纳米级,长度通常为微米级,而碳纳米管纤维具有宏观长度和微米级径向尺寸。如何将纳米尺度的碳纳米管单体组装制备成宏观尺度的纤维,并最大限度保持其优异性能是实现碳纳米管纤维
《科学》:科学家开发出分离碳纳米管技术
根据导电性质的不同,碳纳米管可分为金属型和半导体型,但在合成过程中,两种类型的碳纳米管总是混合在一起。美国杜邦公司和康奈尔大学的研究人员最近开发了一种分离不同类型碳纳米管的技术,《科学》杂志1月9日刊登了这一成果。 碳纳米管韧性高、导电性强、场发射性能优良,兼具金属性和半导体性,有“超级纤维”之称。
物理所碳纳米管结构分离研究获进展
从概念上讲,碳纳米管是由石墨烯卷曲形成的一维管状分子,具有石墨烯优异的力学、热学性能以及极高的载流子迁移率等特点,并表现出结构可调的电子、光电子特性,在构建下一代高速低功耗、高集成度电子和光电子集成回路方面具有重要的应用前景。然而,碳纳米管性质是由其结构决定的。原子排列上的微小差异将导致其性质的