植生生态所揭示链霉菌抗生素生物合成调控的新机制
6月7日,国际微生物学权威期刊Molecular Microbiology在线发表了中科院上海生命科学研究院植生生态所姜卫红研究组的学术论文Differential regulation of antibiotic biosynthesis by DraR-K, a novel two-component system in Streptomyces coelicolor。该研究揭示了天蓝色链霉菌中新型双组分系统DraR-K参与抗生素生物合成差异调控的分子机制。 双组分系统(Two-component system,TCS)是生物体感受外界刺激,调节细胞生理代谢和行为的信号传导系统,由组氨酸激酶和应答调控蛋白组成。TCS广泛存在于微生物中,参与调控初级与次级代谢、形态分化、渗透压以及致病性等重要生理过程。链霉菌是自然界中最主要的抗生素产生菌,对其开展抗生素合成相关TCS的研究不仅有助于认识其复杂的调控网络,......阅读全文
植生生态所揭示链霉菌抗生素生物合成调控的新机制
6月7日,国际微生物学权威期刊Molecular Microbiology在线发表了中科院上海生命科学研究院植生生态所姜卫红研究组的学术论文Differential regulation of antibiotic biosynthesis by DraR-K, a novel
微生物所在链霉菌群体感应信号合成调控方面取得新进展
细菌能自发产生、释放一些特定的信号分子,并能感知其浓度变化,调节微生物的群体行为,这一调控系统称为群体感应(quorum sensing,QS)。细菌群体感应在细菌和宿主之间的相互作用中起着重要的调控作用。 在链霉菌中,γ-丁酸内酯(gamma-butyrolactone) 类群体
深海来源链霉菌次级代谢产物合成潜力挖掘研究获进展
高压、高盐及低温的深海环境曾被认为是生命的荒漠。随着海洋科学技术的发展,人们对深海的探索能力日益增强,发现了深海(甚至万米深的马里亚拉海沟)也有微生物的生命活动,并从深海沉积物样品中分离鉴定了多个种属的放线菌。基因组测序表明,一些深海来源的放线菌基因组中还蕴藏着许多次级代谢产物合成基因簇,但大部
链霉菌,你了解多少?
简介 链霉菌(Streptomycetaceae)是最高等的放线菌。放线菌目的一科。 有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、65孢子丝。孢子丝再形成分生孢子。 孢子丝和孢子的形态、颜色因种而异,是分种的主要识别性状之一。已报道的有千余种,主要分布于土壤中。爱医培
链霉菌,你了解多少?
简介 链霉菌(Streptomycetaceae)是最高等的放线菌。放线菌目的一科。 有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、65孢子丝。孢子丝再形成分生孢子。 孢子丝和孢子的形态、颜色因种而异,是分种的主要识别性状之一。已报道的有千余种,主要分布于土壤中。爱医培
链霉菌,你了解多少?
放线菌目的一科。基内菌丝不断裂,气生菌丝通常发育良好,形成长(有时短)的孢子丝。孢子不能运动,外鞘上常有疣、刺或毛发等状饰物。简介链霉菌(Streptomycetaceae)是最高等的放线菌。放线菌目的一科。有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、65孢子丝。孢子丝再形成分生孢子
什么是链霉菌属?
链霉菌属(Streptomyces)共约1000多种,其中包括和很多不同的种别和变种。它们具有发育良好的菌丝体,菌丝体分枝,无隔膜,直径约0.4~1微米,长短不一,多核。菌丝体有营养菌丝、气生菌丝和孢子丝之分,孢子丝再形成分生孢子。孢子丝和孢子的形态因种而异,这是链霉菌属分种的主要识别性状之一。
链霉菌属的分类介绍
中科院微生物研究所根据气生菌丝(孢子堆)的颜色、基内菌丝的颜色、可溶性色素、孢子丝的形状、孢子的形状和表面结构等特征,将本属分为14个种组,每个种组又包括许多不同的种,以此做为链霉菌属各种的鉴定和寻找新的抗生素产生菌的依据。主要代表如产生链霉素的灰色链霉菌。
基因技术可实现链黑菌素类抗生素高效合成
上海交通大学微生物代谢国家重点实验室林双君研究小组通过对链黑菌素生物合成基因簇进行基因解析,阐明了链黑菌素复杂的生物合成途径。由此得到的链黑菌素类似物不仅抗癌活性高很多,其毒性上也比原始链黑菌素降低了约5倍。该研究成果近日发表在国际权威学术期刊《美国化学会会志》上。 链黑菌素是由一株绒毛链
研究揭示海洋链霉菌产蒽环类抗生素自我解毒抗性机制
中国科学院南海海洋研究所研究员鞠建华课题组通过开展生物合成途径的解析、体内外生化实验表征及生物活性检测等系列研究,揭示了海洋链霉菌产蒽环类抗生素自我解毒的抗性机制。相关研究12月6日发表在《通讯生物学》。据悉,博士生桂春为论文第一作者。 微生物可生产结构多样的活性次级代谢产物作为化学防御分子
抗生素“主药”链霉菌——它的生命周期调控特征是怎样的?
链霉菌是我们的主要抗生素来源。在其复杂的生长生命周期中(从营养生长到孢子形成的过程中)产生了我们需要的抗生素。 John Innes中心的Mark Buttner教授实验室先前的研究表明,信号分子c-di-GMP与基因活性的主要抑制剂BldD结合,能够控制这些土壤细菌的发育。 c-di-GM
林可霉素生物合成获突破-小分子硫醇“导演”抗生素合成
分子硫醇广泛存在于所有真核和原核生物体系中,长期以来,对其功能的理解局限于对抗各种内源性和外源性因素所引起的细胞氧化还原平衡失调。近日,中国科学院上海有机化学研究所刘文团队的发现显然突破了这一认知“禁锢”:小分子硫醇不但可以充当广为人知的“保护性”角色,而且可以前所未有地扮演“建设性”的角色用于
链霉菌属的重要作用
链霉菌的次级代谢产物种类丰富,最重要的就是产生抗生素。现发现由链霉菌产生的抗生素有1000多种,已经应用于临床的近百种,如链霉素(streptomycin)、卡那霉素(kanamycin)、丝裂霉素(mitomycin),土霉素(oxytetmcycline)等。有的链霉菌能产生多种抗生素,还有
关于链霉菌属的分布介绍
链霉菌主要分布于含水量较低、有机质含量丰富的中性或微碱性土壤中,多数为腐生+好气性异养菌。由于能产生大量的孢子,故有较强的抗干燥能力。链霉菌孢子对热的抵抗力比细菌芽胞弱,但强于营养体细胞。对链霉菌的保藏一般利用沙土法,在4℃的冰箱中可存活1~3年。
微生物所链霉菌次级代谢产物产量的适配策略研究获进展
链霉菌能产生丰富的次级代谢产物,目前临床上应用的抗生素约三分之二由该属微生物产生,因此链霉菌被称为药物合成的天然细胞工厂。然而,自然界分离得到的野生链霉菌抗生素合成水平很低,难以满足产业化的要求;已产业化的工程菌株需要不断提高产量,以降低生产成本。因此,如何获得链霉菌高产菌株成为几十年来对其进行
“唤醒”沉默的基因-新方法揭秘微生物“生命暗物质”
微生物具有合成多种天然产物的能力。但在微生物合成天然产物时,大量合成基因仍处于“沉默”状态。它们的产物被称为微生物“生命暗物质”。如何有效激活并挖掘这些“生命暗物质”?近日,中国科学院深圳先进技术研究院合成生物学研究所(以下简称深圳先进院合成所)研究员罗小舟,与美国加州大学伯克利分校教授杰·基斯林及
科学家揭示海洋链霉菌产蒽环类抗生素自我解毒抗性机制
中国科学院南海海洋研究所研究员鞠建华课题组,通过开展生物合成途径的解析、体内外生化实验表征及生物活性检测等系列研究,揭示了海洋链霉菌产蒽环类抗生素自我解毒的抗性机制,论文以CytA, a reductase in the cytorhodin biosynthesis pathway, inac
英国开发合成生物学/化学抗生素生产平台
英国布里斯托尔大学的研究人员发表于2017年11月28日的《自然-通讯》期刊的论文称,他们将合成生物学和化学相结合,创造了一个现代化的技术平台,可以生产新的抗生素以对抗日截短侧耳素的衍生物是有效的抗菌药物,但通常需要进行严苛的化学修饰。布里斯托尔大学研究人员鉴定了涉及截短侧耳素生物合成的步骤,确
产量提升!新方法揭秘微生物“生命暗物质”
微生物具有合成多种天然产物的能力,成为人类药物开发的宝库。但在微生物合成天然产物时,大量合成基因仍处于“沉默”状态,它们的产物被称为微生物“生命暗物质”。如何有效激活并挖掘这些“生命暗物质”,是限制新天然产物发现的瓶颈。随着基因测序技术的普及和基因组分析方法的成熟,人们有望绕过繁冗的改造工序,突破菌
链霉菌属的特征和培养介绍
放线菌目中的一个大属。菌丝纤细、无隔、多核、分枝,革兰氏阳性,菌丝体发达,分化成基内菌丝和气生菌丝,后者成熟后发育成孢子丝,其形态多样(直、波曲、螺旋、轮生),可裂生大量分生孢子进行散播、繁殖。菌落小而致密、干而不透明,幼时表面光滑、边缘整齐、颜色单调、不易挑起,继而发展成绒毛状、表面起粉、色泽
关于天蓝色链霉菌的简介
天蓝色链霉菌是生产三分之二用于医药的天然抗生素以及共9000余种具生物活性物质的链霉菌大家族中的一员。其为革兰氏阳性,土壤链霉菌。 用于分类学研究,以及作为异源表达的模式菌株。 属名:Streptomyces 种名:coelicolor 具体用途:分类学研究。 培养基:331 培养温
天蓝色链霉菌的基因特征
天蓝色链霉菌(Streptomyces coelicolor)基因组,也是迄今最大的微生物基因组的测序工作,该基因组中蕴藏着令人惊奇而又大有前途的基因组特征。科学家们力图将该细菌转化成更佳的药物开发工具。 天蓝色链霉菌是生产三分之二用于医药的天然抗生素以及共9000余种具生物活性物质的链霉菌大
链霉菌属的基本信息介绍
链霉菌属(streptomyces),是最高等的放线菌。有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、65孢子丝。营养菌丝又名基内菌丝,色浅,较细,具有吸收营养和排泄代谢废物的功能;气生菌丝是颜色较深,直径较粗的分枝菌丝;气生菌丝成熟分化成孢子丝,孢子丝再形成分生孢子。孢子丝和孢子
关于弗氏链霉菌的基本介绍
弗氏链霉菌气丝落英淡粉色或粉色。基丝无色或微黄色。在大部分培养基内无可溶色素。克氏合成1号琼脂:气丝荷花白色。 蔗糖硝酸盐琼脂:基丝麦芽糖黄色。可溶色素无或微黄色。葡糖天冬素琼脂:气丝落英淡粉色。基丝微黄色。高氏合成1号琼脂:气丝荷花白色、浅粉色。基丝淡黄色。淀粉合成琼脂:气丝微白色。基丝无色
链霉菌属的致病性介绍
大部分(超过500种)链霉菌是非致病的污染菌或定植菌。但索马里链霉菌例外,该菌可引起足菌肿病,偶尔引起侵袭性感染。其他菌种很少引起疾病。灰色链霉菌(也称圆环链霉菌)是从人体标本中最常分离的菌种,但认为其是偶尔引起感染的病原菌;更为人熟知的,它是链霉素的原始来源。分离菌株通常只鉴定到属水平(如果要
新方法揭秘微生物“生命暗物质”
微生物具有合成多种天然产物的能力。但在微生物合成天然产物时,大量合成基因仍处于“沉默”状态。它们的产物被称为微生物“生命暗物质”。 如何有效激活并挖掘这些“生命暗物质”? 近日,中国科学院深圳先进技术研究院合成生物学研究所(以下简称深圳先进院合成所)研究员罗小舟,与美国加州大学伯克利分
通过串联删除吸水链霉菌5008的γ丁内脂受体基因...(一)
通过串联删除吸水链霉菌5008的γ丁内脂受体基因提高井冈霉素产量摘要 γ丁内脂(γ-butyrolactone简称GBL)生物合成基因afsA和GBL受体基因arpA的两对同系物位于吸水链霉菌基因组的不同位置。井冈霉素是一种重要的抗菌抗生素,同时也是抗糖尿病药物合成的关键底物。抑制afsA能够使急剧
单链-cDNA-的合成实验
一、材料1. 缓冲液、溶液和试剂去除 RNA 酶的双蒸水10XRT-PCR 缓冲液(去除 RNA 酶的双蒸水,100 mmol/LTris-HCl、pH8.3,500 mmol/LKC1,15 mmol/LMgCl2)2. 酶和酶缓冲液MMLV 逆转录酶(100~200U/ul)SUPERaseIN
单链-cDNA-的合成实验
实验步骤 一、材料1. 缓冲液、溶液和试剂去除 RNA 酶的双蒸水10XRT-PCR 缓冲液(去除 RNA 酶的双蒸水,100 mmol/LTris-HCl、pH8.3,500 mmol/LKC1,15 mmol/LMgCl2)2. 酶和酶缓冲液
单链-cDNA-的合成实验
本方案利用的是总RNA,因为如果使用18SrRNA作内对照,在后续实验中就不能使用带poly(A)的RNA。并且必须用DNA酶处理RNA,以去除所有污染的基因组DNA。本实验来源于 PCR 实验指南(第二版),作者:种康,瞿礼嘉。实验步骤一、材料1. 缓冲液、溶液和试剂去除 RNA 酶的双蒸水10X