天蓝色链霉菌的基因特征

天蓝色链霉菌(Streptomyces coelicolor)基因组,也是迄今最大的微生物基因组的测序工作,该基因组中蕴藏着令人惊奇而又大有前途的基因组特征。科学家们力图将该细菌转化成更佳的药物开发工具。 天蓝色链霉菌是生产三分之二用于医药的天然抗生素以及共9000余种具生物活性物质的链霉菌大家族中的一员。不同于其它种类的细菌,链霉菌长成细丝状菌落,象多细胞生物体一样发育出专门的“组织”。链霉菌繁殖前,会生产出更多的抗生素以抵御竞争者。这恰恰是科学家想要针对抗药性细菌所采用的策略。......阅读全文

天蓝色链霉菌的基因特征

  天蓝色链霉菌(Streptomyces coelicolor)基因组,也是迄今最大的微生物基因组的测序工作,该基因组中蕴藏着令人惊奇而又大有前途的基因组特征。科学家们力图将该细菌转化成更佳的药物开发工具。  天蓝色链霉菌是生产三分之二用于医药的天然抗生素以及共9000余种具生物活性物质的链霉菌大

关于天蓝色链霉菌的简介

  天蓝色链霉菌是生产三分之二用于医药的天然抗生素以及共9000余种具生物活性物质的链霉菌大家族中的一员。其为革兰氏阳性,土壤链霉菌。  用于分类学研究,以及作为异源表达的模式菌株。  属名:Streptomyces  种名:coelicolor  具体用途:分类学研究。  培养基:331  培养温

链霉菌属的特征和培养介绍

  放线菌目中的一个大属。菌丝纤细、无隔、多核、分枝,革兰氏阳性,菌丝体发达,分化成基内菌丝和气生菌丝,后者成熟后发育成孢子丝,其形态多样(直、波曲、螺旋、轮生),可裂生大量分生孢子进行散播、繁殖。菌落小而致密、干而不透明,幼时表面光滑、边缘整齐、颜色单调、不易挑起,继而发展成绒毛状、表面起粉、色泽

霉菌毒素的特征

◆低分子化合物。◆非常稳定,可耐高温,即使加热到340℃也不会将其分解和破坏。◆抗化学生物制剂及物理的灭活作用。◆具有广泛的中毒效应。◆特异性:分子结构不同,毒性相差很大。例如,据报道,黄曲霉毒素B1是常见的一种霉菌毒素,但是仅改变分子结构中的一个化学键,它的毒性显著下降。◆协同性:各种霉菌毒素的同

霉菌的形态特征

成霉菌体的基本单位称为菌丝,呈长管状,宽度2~10微米,可不断自前端生长并分枝。无隔或有隔,具1至多个细胞核。细胞壁分为三层:外层无定形的β葡聚糖(87nm);中层是糖蛋白,蛋白质网中间填充葡聚糖(49nm);内层是几丁质微纤维,夹杂无定形蛋白质(20nm)。在固体基质上生长时,部分菌丝深入基质吸收

霉菌的形态特征

成霉菌体的基本单位称为菌丝,呈长管状,宽度2~10微米,可不断自前端生长并分枝。无隔或有隔,具1至多个细胞核。细胞壁分为三层:外层无定形的β葡聚糖(87nm);中层是糖蛋白,蛋白质网中间填充葡聚糖(49nm);内层是几丁质微纤维,夹杂无定形蛋白质(20nm)。在固体基质上生长时,部分菌丝深入基质吸收

链霉菌属的分类介绍

  中科院微生物研究所根据气生菌丝(孢子堆)的颜色、基内菌丝的颜色、可溶性色素、孢子丝的形状、孢子的形状和表面结构等特征,将本属分为14个种组,每个种组又包括许多不同的种,以此做为链霉菌属各种的鉴定和寻找新的抗生素产生菌的依据。主要代表如产生链霉素的灰色链霉菌。

链霉菌,你了解多少?

  简介   链霉菌(Streptomycetaceae)是最高等的放线菌。放线菌目的一科。   有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、65孢子丝。孢子丝再形成分生孢子。 孢子丝和孢子的形态、颜色因种而异,是分种的主要识别性状之一。已报道的有千余种,主要分布于土壤中。爱医培

链霉菌,你了解多少?

放线菌目的一科。基内菌丝不断裂,气生菌丝通常发育良好,形成长(有时短)的孢子丝。孢子不能运动,外鞘上常有疣、刺或毛发等状饰物。简介链霉菌(Streptomycetaceae)是最高等的放线菌。放线菌目的一科。有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、65孢子丝。孢子丝再形成分生孢子

链霉菌,你了解多少?

  简介   链霉菌(Streptomycetaceae)是最高等的放线菌。放线菌目的一科。   有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、65孢子丝。孢子丝再形成分生孢子。 孢子丝和孢子的形态、颜色因种而异,是分种的主要识别性状之一。已报道的有千余种,主要分布于土壤中。爱医培

什么是链霉菌属?

  链霉菌属(Streptomyces)共约1000多种,其中包括和很多不同的种别和变种。它们具有发育良好的菌丝体,菌丝体分枝,无隔膜,直径约0.4~1微米,长短不一,多核。菌丝体有营养菌丝、气生菌丝和孢子丝之分,孢子丝再形成分生孢子。孢子丝和孢子的形态因种而异,这是链霉菌属分种的主要识别性状之一。

蓝色链霉菌中筛选出活性基因簇

  荷兰格罗宁根大学的研究人员利用基因挖掘法从蓝色链霉菌中发现了一组活性基因簇,通过该基因簇可制造出无耐药性的新型抗生素,该研究有望为链霉菌的药用开发提供一条新思路。相关研究发表在最新一期《微生物学》杂志上。   链霉菌是生活在土壤中的一种常见细菌,其家族包含多种细菌。不同于其他细

简述霉菌毒素的特征

  ◆低分子化合物。  ◆非常稳定,可耐高温,即使加热到340℃也不会将其分解和破坏。  ◆抗化学生物制剂及物理的灭活作用。  ◆具有广泛的中毒效应。  ◆特异性:分子结构不同,毒性相差很大。例如,据报道,黄曲霉毒素B1是常见的一种霉菌毒素,但是仅改变分子结构中的一个化学键,它的毒性显著下降。  ◆

曲霉菌的形态特征

  营养菌[5]丝具有分隔;气生菌丝的一部分形成长而粗糙的分生孢子梗,顶端产生烧瓶形或近球形顶囊,表面产生许多小梗(一般为双层),小梗上着生成串的表面粗糙的球形分生孢子。分生孢子梗、顶囊、小梗和分生孢子合成孢子头,可用于产生淀粉酶、蛋白酶和磷酸二酯酶等,也是酿造工业中的常见菌种。  另有米曲霉(A.

通过串联删除吸水链霉菌5008的γ丁内脂受体基因...(三)

通过串联删除吸水链霉菌5008的γ丁内脂受体基因提高井冈霉素产量以上结果表明同时删除shbR1/shbR3能够完全抑制adpA-H转录,增加井冈霉素产量。5. 同时突变后转录分析为了研究shbR1/shbR3缺失对细胞代谢的影响,本研究采用RNA测序对野生型以及shbR1/shbR3同时突变菌株进行

通过串联删除吸水链霉菌5008的γ丁内脂受体基因...(一)

通过串联删除吸水链霉菌5008的γ丁内脂受体基因提高井冈霉素产量摘要 γ丁内脂(γ-butyrolactone简称GBL)生物合成基因afsA和GBL受体基因arpA的两对同系物位于吸水链霉菌基因组的不同位置。井冈霉素是一种重要的抗菌抗生素,同时也是抗糖尿病药物合成的关键底物。抑制afsA能够使急剧

通过串联删除吸水链霉菌5008的γ丁内脂受体基因...(二)

通过串联删除吸水链霉菌5008的γ丁内脂受体基因提高井冈霉素产量2. afsA及arpA同系物参与井冈霉素生物合成分别删除afsA以及arpA同系物。shbA1失活导致井冈霉素产量下降超过90%;ShbA2和shbA3失活分别导致产量下降77%和61%(Fig 3A)。ΔshbR1和Δshb

链霉菌属的重要作用

  链霉菌的次级代谢产物种类丰富,最重要的就是产生抗生素。现发现由链霉菌产生的抗生素有1000多种,已经应用于临床的近百种,如链霉素(streptomycin)、卡那霉素(kanamycin)、丝裂霉素(mitomycin),土霉素(oxytetmcycline)等。有的链霉菌能产生多种抗生素,还有

关于链霉菌属的分布介绍

  链霉菌主要分布于含水量较低、有机质含量丰富的中性或微碱性土壤中,多数为腐生+好气性异养菌。由于能产生大量的孢子,故有较强的抗干燥能力。链霉菌孢子对热的抵抗力比细菌芽胞弱,但强于营养体细胞。对链霉菌的保藏一般利用沙土法,在4℃的冰箱中可存活1~3年。

微生物所在链霉菌启动子元件和内参基因研究中获进展

  链霉菌是重要的抗生素产生菌,对链霉菌进行代谢工程和合成生物学改造需要大量不同强度的启动子元件。然而,前期链霉菌只有一个组成型启动子ermEp* 被广泛应用。中国科学院微生物研究所杨克迁课题组在2013年开发了活性明显高于ermEp* 的强启动子kasOp*(Appl. Environ. Micr

浙江大学JBC揭示蛋白质调控新机制

  来自浙江大学生命科学学院生物化学研究所的研究人员,揭示了天蓝色链霉菌(Streptomyces coelicolor)中ECFσ因子通过蛋白降解途径调控其在细胞内水平,以及次级代谢产物作为σ因子的调控因子通过正反馈调控模式调节次级代谢过程的机制,从而深刻阐述了σ因子蛋白稳定性与细胞分化的相互

抗生素“主药”链霉菌——它的生命周期调控特征是怎样的?

  链霉菌是我们的主要抗生素来源。在其复杂的生长生命周期中(从营养生长到孢子形成的过程中)产生了我们需要的抗生素。  John Innes中心的Mark Buttner教授实验室先前的研究表明,信号分子c-di-GMP与基因活性的主要抑制剂BldD结合,能够控制这些土壤细菌的发育。  c-di-GM

霉菌菌落的特征基本介绍

  A、形态较大,质地疏松,外观干燥,不透明,呈现或松或紧的形状。  B、菌落和培养基间的连接紧密,不易挑取,菌落正面与反面的颜色、构造,以及边缘与中心的颜色、构造常不一致。  C、霉菌的菌丝有营养菌丝和气生菌丝的分化,而气生菌丝没有毛细管水,故它们的菌落必然与细菌或酵母菌的不同,较接近放线菌。  

κ链缺陷的临床特征

中文名称κ链缺陷英文名称κ chain deficiency定  义极罕见的原发性体液免疫缺陷病。患者血清或B细胞表面不能检出含κ链的免疫球蛋白分子。应用学科免疫学(一级学科),免疫病理、临床免疫(二级学科),免疫缺陷病(三级学科)

串联删除吸水链霉菌5008的γ丁内脂受体基因提高井冈霉素

  γ丁内脂(γ-butyrolactone简称GBL)生物合成基因afsA和GBL受体基因arpA的两对同系物位于吸水链霉菌基因组的不同位置。井冈霉素是一种重要的抗菌抗生素,同时也是抗糖尿病药物合成的关键底物。抑制afsA能够使急剧降低井冈霉素的生物合成,删除arp同系物能够分别增加井冈霉素的产率

关于弗氏链霉菌的基本介绍

  弗氏链霉菌气丝落英淡粉色或粉色。基丝无色或微黄色。在大部分培养基内无可溶色素。克氏合成1号琼脂:气丝荷花白色。  蔗糖硝酸盐琼脂:基丝麦芽糖黄色。可溶色素无或微黄色。葡糖天冬素琼脂:气丝落英淡粉色。基丝微黄色。高氏合成1号琼脂:气丝荷花白色、浅粉色。基丝淡黄色。淀粉合成琼脂:气丝微白色。基丝无色

链霉菌属的致病性介绍

  大部分(超过500种)链霉菌是非致病的污染菌或定植菌。但索马里链霉菌例外,该菌可引起足菌肿病,偶尔引起侵袭性感染。其他菌种很少引起疾病。灰色链霉菌(也称圆环链霉菌)是从人体标本中最常分离的菌种,但认为其是偶尔引起感染的病原菌;更为人熟知的,它是链霉素的原始来源。分离菌株通常只鉴定到属水平(如果要

链霉菌属的基本信息介绍

  链霉菌属(streptomyces),是最高等的放线菌。有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、65孢子丝。营养菌丝又名基内菌丝,色浅,较细,具有吸收营养和排泄代谢废物的功能;气生菌丝是颜色较深,直径较粗的分枝菌丝;气生菌丝成熟分化成孢子丝,孢子丝再形成分生孢子。孢子丝和孢子

链霉菌亮氨酰tRNA合成酶识别两类亮氨酸tRNA的分子机理

  国际学术期刊《核酸研究》(Nucleic Acids Research)在线发表了中国科学院分子细胞科学卓越创新中心/生物化学与细胞生物学研究所王恩多研究组的最新研究成果:LeuRS can leucylate type I and type II tRNALeus in Streptomyce

植生生态所揭示链霉菌抗生素生物合成调控的新机制

  6月7日,国际微生物学权威期刊Molecular Microbiology在线发表了中科院上海生命科学研究院植生生态所姜卫红研究组的学术论文Differential regulation of antibiotic biosynthesis by DraR-K, a novel