X荧光能谱分析仪中谱线处理方法的研究

本文主要讨论了能量色散X射线荧光光谱仪(EDXRF)中对谱数据进行处理的方法。文中使用基于离散Meyer(dmey)小波方法对谱线平滑,对信号进行3层分解,保留低频部分,去除高频部分。利用剥峰的方法估计本底,在前人所做工作的基础上做了一些改变,使得运算速度更快。接着对处理好的谱定性分析(寻峰),根据峰位知道样品中所含的各元素,然后在寻峰的基础上采用非线性最小二乘原理对谱线进行进行定量分析(解谱),这样就可以求出各元素的浓度。该方法不仅提高了测量精度而且可以为以后测量多元素提供了参考。......阅读全文

X荧光能谱分析仪中谱线处理方法的研究

本文主要讨论了能量色散X射线荧光光谱仪(EDXRF)中对谱数据进行处理的方法。文中使用基于离散Meyer(dmey)小波方法对谱线平滑,对信号进行3层分解,保留低频部分,去除高频部分。利用剥峰的方法估计本底,在前人所做工作的基础上做了一些改变,使得运算速度更快。接着对处理好的谱定性分析(寻峰),根据

能量色散X荧光能谱仪

  能量色散X-荧光能谱仪是一种用于化学、材料科学领域的分析仪器,于2011年11月10日启用。  技术指标  检测项目:适用于金属、化工、石油、土壤、矿石元素分析,满足固体、液体、粉末、 水质及油类等形态样品中的多种无机元素的定性、半定量和定量分析。满足镀层和薄膜厚度的测定。用于科研制标工作。 检

便携式X荧光能谱仪简介

  便携式X荧光能谱仪是专业的指令筛选仪器。该仪器提供一种快速、可靠、无损样品的筛检手段,对于塑料外壳、印刷电路板、电缆、含镀层的紧固件等都可以用这一件轻便设备进行多元素无损检测。轻扣扳机,对样品中的镉、铅、汞、铬总量、溴总量及其它构成元素进行定量分析,快速判定检测结果。使您在更短的时间内处理更多的

X射线荧光光谱仪和X射线荧光能谱仪特点对比

X射线荧光光谱仪和X射线荧光能谱仪各有优缺点。前者分辨率高,对轻、重元素测定的适应性广。对高低含量的元素测定灵敏度均能满足要求。后者的X射线探测的几何效率可提高2~3数量级,灵敏度高。可以对能量范围很宽的X射线同时进行能量分辨(定性分析)和定量测定。对于能量小于2万电子伏特左右的能谱的分辨率差。

高性能荧光能谱仪

在材料的成分分析中,荧光能谱仪具有重要的作用,ARL QUANT’X高效荧光能谱仪以其独特的技术特点,灵活的方法开发,极低的运行、维护成本等,成为材料分析领域的理想工具。 ARL QUANT'X荧光能谱仪特点 端窗发射技术 采用端窗高效发射X-光管技术,最大限度地提高

X射线能谱数据处理

本文提出运用FFT,对双路实测能谱信息在变换域中加以滤波修正,同时完成平滑及背底扣除。文中剖析了EDAX-7EMZL程序,并与诸元素特征峰及背底的谱分析相比较,获取滤波修正频窗。文中编制了双路能谱同时作滤波修正程序。试验表明:此法实现了数据压缩及零相位校正,增快了滤波速度,减小了相位滞移量,提高了分

X射线能谱分析中谱线重叠问题

扫描电子显微镜上配接Si(Li)探测器X射线能谱仪,进行地质样品分析时,由于它的峰,背比值较低和谱线分辨率不如X射线波谱仪,尽管探测效率很高,仍然存在谱线的干扰或重叠现象。谱线的干扰或重叠现象主要划分为三个类型:相邻或相近元素同一线系(K、L、M)的谱线之间重叠;原子序数较低的K线系谱线与原子序数较

便携式X荧光能谱仪的技术参数和特点

  技术参数  激发源:微型X射线管最大40kV/50μA  输入电源:AC 85/265V,一次充电使用时间6小时  测量时间:

什么是谱线?

谱线是在均匀且连续的光谱上明亮或黑暗的线条,起因于光子在一个狭窄的频率范围内比附近的其他频率超过或缺乏。

X荧光中干扰谱线的来源及消除方法

在X射线光谱分析中,由于谱线之前互相干扰比较少,并且减少这种干扰的方法较多,在多数情况下谱线干扰现象不是影响分析结果的主要因素。但是在某些情况如稀土化合物中稀土元素的测定中,谱线重叠现象仍然是严重的。这种干扰,轻则影响强度的确定,增加分析线强度测量的统计误差,降低分析元素的测定灵敏度;重则是某些分析

为什么同一物质的吸收光谱的谱线比线状谱的谱线线少

物质能放出的光子的种类就较多由于吸收光谱往往是电子从单一的基态吸收能量跃迁到激发态形成,这样能物质吸收的光子的种类较少。而发射光谱则是由每一个较高激发态向所有的较低能级(包括基态)跃迁时形成,所以吸收光谱的谱线少于线状光谱的谱线

X-射线能谱

X 射线能谱( Energy-dispersive X-ray spectroscopy, EDS)是微区成分分析最为常用的一种方法,其物理基础是基于样品的特征 X 射线。当样品原子内层电子被入射电子激发或电离时,会在内层电子处产生一个空缺,原子处于能量较高的激发状态,此时外层电子将向内层跃迁以填补

夫琅和费谱线的发现

  德国物理学家夫琅和费(1787~1826),也独立地采用了狭缝,在研究玻璃对各种颜色光发折射率时偶然发现了灯光光谱中的橙色双线;  1814年,发现太阳光谱中的许多暗线;  1822年,夫琅和费用钻石刻刀在玻璃上刻划细线的方法制成了衍射光栅。夫琅和费是第一位用衍射光栅测量波长的科学家,被誉为光谱

光栅光谱一级谱线和二级谱线关系

光栅光谱一级谱线和二级谱线关系是一级谱线靠近中央,二级谱线在外侧。二级谱线的分辨率是一级光谱的两倍。例如入射狭缝为25μm,出射狭缝宽度为88μm,其一级光谱的分辨率为0.0375nm,其二级光谱为0.0188nm。

XPS谱图中有哪些重要的谱线结构?

XPS谱图一般包括光电子谱线,卫星峰(伴峰),俄歇电子谱线,自旋-轨道分裂(SOS)等

氘灯的特征谱线

  氘灯是最常用来检测紫外可见分光光度计的波长准确度的标准灯。大多数进口紫外可见分光光度计,都用仪器上的氘灯来检测波长准确度。国产紫外可见分光光度计中,中档以上、带有自动扫描的仪器,也都采用仪器上的氘灯来检测波长准确度(如TU-1900、TU-1901、UV-2100、TU-1810、SP-2500

氘灯的特征谱线

氘灯是最常用来检测紫外可见分光光度计的波长准确度的标准灯。大多数进口紫外可见分光光度计, 都用仪器上的氘灯来检测波长准确度。国产紫外可见分光光度计中, 中档以上、带有自动扫描的仪器, 也都采用仪器上的氘灯来检测波长准确度(如TU-1900、T U-1901、UV-2100、TU-1810 等

谱线“红移”是什么

1.由于多普勒效应,从离开我们而去的恒星发出的光线的光谱向红光光谱方向移动。  2.一个天体的光谱向长波(红)端的位移。天体的光或者其它电磁辐射可能由于运动、引力效应等被拉伸而使波长变长。因为红光的波长比蓝光的长,所以这种拉伸对光学波段光谱特征的影响是将它们移向光谱的红端,于是这些过程被称为红移[1

谱线的基本概念

谱线通常是量子系统(通常是原子,但有时会是分子或原子核)和单一光子交互作用产生的。当光子的能量确实与系统内能阶上的一个变化符合时(在原子的情况,通常是电子改变轨道),光子被吸收。然后,它将再自发地发射,可能是与原来相同的频率或是阶段式的,但光子发射的总能量将会与当初吸收的能量相同,而新光子的方向不会

谱线“红移”是什么

可能存在三中形成宇宙谱线红移的原因,即:宇宙学效应、多普勒效应、康普顿效应,本文从理论上提出鉴别那一种是形成主要原因的方法。并针对试验的可能性的结果提出对宇宙观念的可能性影响。一、引言  1、牛顿力学导致的宇宙观念  在牛顿力学中,由于基础性的定义来自于牛顿运动定律,因此对于宇宙的观念存在着一定的局

氘灯的特征谱线

摘要:特别要注意两点:第一,光谱带宽大于2nm以上的仪器也不能用仪器上的氘灯检测波长准确度,因为656.1nm这根特征谱线很尖锐,容易产生误差;第二,仪器制造厂商,不能只用氘灯检测波长准确度,因为可见区的波长准确度好,不能完全代替紫外区的波长准确度也好。 氘灯是最常用来检测紫外可见分光光度计的波

谱线红移说明什么

多普勒效应的一种形式。最早是在声波中发现的多普勒效应,火车从远处走来,声波的频率变高,火车远离,声波的频率变低。光波也是一种波,类似于声波,当发光的恒星远离我们的时候,我们接受到的光线就会波长变长(频率变低),也就是红移。如果恒星接近我们,那么我们接收到的光波波长就会变短,暂且称之为“紫移”。红橙黄

原子吸收光谱仪谱线的轮廓与谱线变宽原因分析

用共振线照射时,获得一峰形吸收(具有一定宽度)。可以看成是由极为精细的许多频率相差甚小的光波组成的,有谱线轮廓。原子吸收线的宽度通常用半宽度表示。最大吸收值的一半处的频率宽度,用△ v表示,简称谱线宽度(Ⅰ0入射光强, Ⅰ 被吸收后的光强, v 0为吸收线的中心频率)。 表征吸收线轮廓(峰)的参数由

原子吸收光谱谱线与原子发射光谱谱线有什么联系

原子吸收光谱是原子发射光谱的逆过程。基态原子只能吸收频率为ν=(Eq-E0)/h的光,跃迁到高能态Eq。因此,原子吸收光谱的谱线也取决于元素的原子结构,每一种元素都有其特征的吸收光谱线。 原子的电子从基态激发到最接近于基态的激发态,称为共振激发。当电子从共振激发态跃迁回基态时,称为共振跃迁。这种跃

X射线能谱仪谱峰重叠问题的探讨

针对X射线能谱仪在对样品进行定性分析时经常出现的元素谱峰重叠问题,进行机理分析和归纳总结,提出在物证检验中如何避免谱峰重叠带来定性分析偏差的方法. 

谱线干扰的概念和定义

待测元素分析线上有其他元素谱线重叠或部分重叠,导致分析结果产生误差,或该分析线无法用于光谱分析。有三种情况:分析线与干扰线波长基本相同,谱线完全重叠;分析线与干扰线波长相近,谱线部分重叠;分析线落在带状光谱上。采用色散率及分辨率高的摄谱仪,可减小或消除谱线干扰。

高压汞灯的特征谱线

高压汞灯也是最常用来检测紫外可见分光光度计的波长准确度的标准灯。其特征波长和特征波长能量见表10-9。    作者曾用上海灯泡厂生产的GGQ-80 仪用高压汞灯, 稍加改造( 去掉玻璃外壳) , 来标定自制的超小型紫外可见分光光度计的波长准确度, 得到了非常满意的结果。实测的253 . 7 nm

谱线的形成和致宽

在各种天体的辐射谱中,往往有许多谱线,有的是发射线,有的是吸收线。谱线是由某种体系的分立能级之间的跃迁形成的。如果E1和E2是某个体系的两个分立能级,且E2>E1,则当体系从E2向E1跃迁时,发射频率为V=(E2 –E1)/h的辐射;反之,当体系从E1向E2跃迁时,吸收频率为v的辐射。如果发射过程比

X射线能谱仪简介

能谱仪是利用X射线能谱分析法来对材料微区成分元素种类与含量分析的仪器,常常配合扫描电子显微镜与透射电子显微镜的使用。

X射线光电子谱

凯.西格班(Kai Manne Borje Siegbahn,1918- )一直从事核能谱的研究。20世纪50年代,他和同事们用双聚焦磁式能谱仪研究放射性能谱。当时,往往会因为回旋加速器的原因不得不停下来等待放射性样品。能否用一种更容易掌握的代用品来激发放射性辐射呢?凯.西格班设想用X射线管使材料发