Nature&Cell两大顶级杂志获表观遗传研究突破

来自美国宾州大学与西北大学的两个研究组,近期分别在Nature和Cell这两大顶级期刊上发表文章,分别取得了表观遗传学核小体研究方面的突破性进展,这两项的关键点都来自其重要的研究新技术――宾州大学的研究人员发展了超高分辨率ChIP-exo技术,而西北大学的研究人员则研发了一种基于改造后组蛋白的化学修饰,来直接绘制核小体中心的方法。 在“Genome-wide Nucleosome Specificity and Directionality of Chromatin Remodelers”文章中,宾州大学首席研究员B. Franklin Pugh教授领导的研究组利用了一种称为核酸外切酶的工具,来去除未有基因调控蛋白结合的DNA序列,从而确定具体的核苷酸序列。 染色体是细胞内携带基因信息的重要构成元件,染色体上特异性蛋白与核小体的结合方式,将能决定是形成大脑细胞,还是肝脏细胞,抑或是癌症细胞,十分重要。然而......阅读全文

著名学者庄小威Science发表遗传学重要成果

  来自哈佛大学的研究人员开发出一种成像方法绘制出了单条染色体上多个区域的位置,研究结果揭示出了一些染色质结构域和隔间(compartment)的空间组织。这一研究成果发布在8月5日的《科学》(Science)杂志上。  著名的华人女科学家庄小威(Xiaowei Zhuang)和哈佛大学的Chao-

三维基因组(HiC)技术解析

Hi-C (High-through chromosome conformation capture) 是以整个细胞核为研究对象,利用高通量测序技术,结合生物信息分析方法,研究全基因组范围内整个染色质DNA在空间位置上的关系,获得高分辨率的染色质调控元件相互作用图谱。Hi-C可以与RNA-S

扫描电镜分辨率

扫描电镜是高能电子散射固体材料,可获得许多特征信号!微观成像是扫描电镜基本功能,要求高分辨,so可为其他特征信号分析提供精确导航!sem一般标配se探测器,用se信号获得高分辨像,且se信号可以充分代表扫描电镜电子光学性能。whysenotother?比靠斯:在电子束样品作用区,可能只有se取样面积

设备分辨率的概念

设备分辨率(Device Resolution)又称输出分辨率,指的是各类输出设备每英寸上可产生的点数,如显示器、喷墨打印机、激光打印机、绘图仪的分辨率。这种分辨率通过DPI来衡量,PC显示器的设备分辨率在60至120DPI之间,打印设备的分辨率在360至2400DPI之间。

扫描电镜分辨率

  分辨率指能分辨的两点之间的最小距离。分辨率d可以用贝克公式表示:d=0.61l/nsina ,a为透镜孔径半角,l为照明样品的光波长,n为透镜与样品间介质折射率。对光学显微镜 a=70°-75°,n=1.4。因为 nsina200nm。要提高分辨率可以通过减小照明波长来实现。SEM是用电子束照射

网屏分辨率的概念

网屏分辨率(Screen Resolution)又称网幕频率(是印刷术语),指的是印刷图像所用网屏的每英寸的网线数(即挂网网线数),以(LPI)来表示。例如150LPI是指每英寸加有150条网线。

显微镜分辨率

D=0.61λ/N*sin(α/2)D:分辨率λ:光源波长α:物镜镜口角(标本在光轴的一点对物镜镜口的张角)想要提高分辨率,可以通过:1、降低λ,例如使用紫外线作为光源;2、增大N,例如放在香柏油中;3、增大α,即尽可能地使物镜与标本的距离降低折叠

扫描分辨率的概念

扫描分辨率指在扫描一幅图像之前所设定的分辨率,它影响所生成的图像文件的质量和使用性能,决定了图像将以何种方式显示或打印。如果扫描图像用于640×480像素的屏幕显示,则扫描分辨率不必大于一般显示器屏幕的设备分辨率,即一般不超过120DPI。大多数情况下,扫描图像是为了通过高分辨率的设备输出。如果图像

科学家绘制出最清晰立体人类基因组结构图

  有助于了解基因调节的更多信息,而且肯定会带来一系列新疑问   美国科学家通过将人类基因组分成数百万个片段并重新排列组合,成功描绘出清晰度和分辨率最高的基因组三维图像。   据美国媒体报道,近日,美国科学家通过将人类基因组分成数百万个片段并重新排列组合,成功描绘出清晰度和分辨率最高的基因组

​-荧光原位杂交的技术发展

(一)多彩色荧光原位杂交(multicolor fluorescence in situ hybridization,mFISH)mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定位在一次

荧光原位杂交的技术分类

(一)多彩色荧光原位杂交(multicolor fluorescence in situ hybridization,mFISH)mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定位在一次

概述荧光原位杂交的技术发展

  (一)多彩色荧光原位杂交(multicolor fluorescence in situ hybridization,mFISH)  mFISH是在荧光原位杂交基础上发展起来的新技术,它不仅具有FISH的优点,而且克服了FISH的许多局限,其最大特点是可将多次繁顼的FISH实验和多种不同的基因定

NatureCell两大顶级杂志获表观遗传研究突破

  来自美国宾州大学与西北大学的两个研究组,近期分别在Nature和Cell这两大顶级期刊上发表文章,分别取得了表观遗传学核小体研究方面的突破性进展,这两项的关键点都来自其重要的研究新技术――宾州大学的研究人员发展了超高分辨率ChIP-exo技术,而西北大学的研究人员则研发了一种基于改造后组蛋白的化

高分辨率质谱仪与低分辨率质谱仪相比较

最大的优点在于,高分辨质谱仪分辨率高定性结果比低分辨质谱仪更准确,但是由于目前高分辨质谱仪除了磁质谱,其它类型仪器都是脉冲分析离子或者是扫描分析离子,因此定量不太准确,所以在定量上低分辨的三重四级杆质谱仪比较准确。

三维基因组(HiC)技术解析

  Hi-C (High-through chromosome conformation capture) 是以整个细胞核为研究对象,利用高通量测序技术,结合生物信息分析方法,研究全基因组范围内整个染色质DNA在空间位置上的关系,获得高分辨率的染色质调控元件相互作用图谱。Hi-C可以与RNA-Seq

三维基因组(HiC)技术解析

  Hi-C (High-through chromosome conformation capture) 是以整个细胞核为研究对象,利用高通量测序技术,结合生物信息分析方法,研究全基因组范围内整个染色质DNA在空间位置上的关系,获得高分辨率的染色质调控元件相互作用图谱。Hi-C可以与RNA-Seq

绘制基因组的“谷歌地图”

  染色体的功能远不止保持DNA整齐有序。这种基因组DNA和蛋白质组成的复合物有许多不同的结构和构象。这些结构和构象可能会影响周围基因的表达。在某些构象中,线性DNA中相距较远的两个序列可能实际上非常靠近,并影响彼此的活性;而在其他形式中,这两个序列又可能相距甚远。  美国麻省理工学院研究生Erez

关于非同源染色体的染色体组的介绍

  细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部遗传信息,这样的一组染色体,叫做一个染色体组。  由于染色技术的发展,在染色体长度、着丝点位置、长短臂比、随体有无等特点的基础上,可以进一步根据染色的显带表现区分出各对同源染色体,并予以分类和编

关于染色体畸变试验—染色体分析的基本介绍

  观察染色体形态结构和数目改变称为染色体分析。在国外常称为细胞遗传学检验,但这一名称有时广义地包括微核试验和SCE试验,因为这两个试验同样也是在显微镜下观察细胞染色体的改变。  对于结构畸变,一般只观察到裂隙、断裂、断片、微小体、染色体环、粉碎、双或多着丝粒染色体和射体。对于缺失,除染色单体缺失外

什么是染色体畸变呢?染色体畸变有几种?

染色体畸变包括数目畸变和结构畸变两类。这些畸变可发生于常染色体,也可发生于性染色体。以二倍体为标准,染色体出现单条、多条或成倍增减称为染色体数目畸变,其畸变类型有整倍体和非整倍体。结构畸变是指染色体出现各种结构的异常,主要的畸变包括断裂、缺失、重复、易位、倒位、等臂染色体、环状染色体、双着丝粒染色体

最通常的物理图的构建方法介绍

最通常的物理图的构建方法是把限制酶切的DNA片段,按其次序排列连接起来。作图的技术路线基本上分两类:一类是由长到短作图,另一类则是由短到长作图。前者是将基因组DNA用切点很少的限制酶如NotI等完全酶切,得到长约100~l000kb的DNA长(大)片段,每条染色体平均切成130个片段,按照片段上的标

自然:二倍体蚕豆基因组解开全球蛋白质作物的变异之谜

丹麦奥胡斯大学Stig Uggerhøj Andersen等研究人员的最新发现表明,巨大的二倍体蚕豆基因组解开全球蛋白质作物的变异之谜。2023年3月8日,《自然》杂志在线发表了这项成果。研究人员介绍,在目前肉类丰富的饮食中增加当地生产的植物蛋白的比例,可以大大减少温室气体排放和生物多样性的损失。然

胚胎植入前染色体筛查的新技术

  尽管体外受精(IVF)已经彻底改变了不孕不育的治疗,但这个过程本身不够高效,成功率很低。染色体非整倍体,是造成体外受精失败的主要原因,因为大多数非整倍体胚胎无法植入,或在孕早期流产。因此,提高成功率的关键,是选择染色体数目正常的胚胎。为此,人们开始采用胚胎植入前染色体筛查(PGS)。  他们最早

新方法助力液体活检中的癌症异质性研究

  意大利的研究人员近日开发出一种简单可靠的方法,可通过简单的抽血来分析循环肿瘤细胞(CTC)中的全基因组拷贝数改变,有助于预测癌症治疗的反应。与传统方法相比,这种单管的操作方案在确保准确性的同时降低了成本,为液体活检带来了可能。  染色体不稳定性及相关的染色体畸变是癌症的标志之一,在疾病进展和耐药

HiFi测序:单碱基分辨率的高通量端粒长度测量方法

  端粒是线状染色体末端的特殊核蛋白结构,包含约5-15 kb的富含TTAGGG的双链重复序列和保护染色体末端的shelterin蛋白复合物,3'末端为富含G的单链悬突,对于维持人类基因组的稳定和完整复制至关重要。  端粒主要依赖端粒酶进行合成,长度也并非一成不变。除了生殖细胞和干细胞,体细

产前遗传学检测技术进展

  《中国出生缺陷防治报告(2012)》显示,我国出生缺陷发生率在5.6%左右,每年新增出生缺陷数约90万例,出生缺陷是导致早期流产、死胎、围产儿死亡、婴幼儿死亡和先天残疾的主要原因,不但严重危害儿童生存和生活质量,也会造成巨大的寿命损失和社会经济负担。  近年来我国高龄孕产妇数量增长,染色体异常等

染色体的组成

  染色体组型(Karyotype):描述一个生物体内所有染色体的大  小、形状和数量信息的图象。这种组型技术可用来寻找染色体歧变同特定疾病的关系,比如:染色体数目的异常增加、形状发生异常变化等。以染色体的数目和形态来表示染色体组的特性,称为染色体组型。虽然染色体组型一般是以处于体细胞有丝分裂中期的

双微染色体

中文名称双微染色体英文名称double minute chromosome;DMC定  义可在肿瘤细胞中观察到的具有成对微小体的染色体。应用学科遗传学(一级学科),细胞遗传学(二级学科)

A染色体的特征

A染色体是真核生物染色体的主要成员,是生命必须的,具有显著的遗传效应的染色体。在每种生物中,所有的个体具有相同的A染色体,而区别于B染色体。

A染色体的作用

A染色体在遗传上是重要的,对个体的正常生活和繁殖是必需的。其数目的增减和结构的变化对机体会造成严重的后果。