A染色体的作用

A染色体在遗传上是重要的,对个体的正常生活和繁殖是必需的。其数目的增减和结构的变化对机体会造成严重的后果。......阅读全文

A染色体的作用

A染色体在遗传上是重要的,对个体的正常生活和繁殖是必需的。其数目的增减和结构的变化对机体会造成严重的后果。

染色体步移的作用

染色体步移(Chromosome walking)是用于鉴定已经克隆的特定DNA片段侧翼顺序的方法。

常染色体的作用举例

常染色体,就是对性别决定不起直接作用,除了性染色体外的所有染色体。人类染色体组。例如,人类细胞内正常染色体为46条(23对),包括22对常染色体和一对性染色体。性染色体包括X染色体和Y染色体,他们携带可以决定性别及相关基因。常染色体指除性染色体之外的22对,通常男性性染色体为XY;女性性染色体为XX

染色体臂的定义和作用

染色体臂是其核细胞中染色体上的结构名称。细胞分裂中期时,每条染色体含有两条染色单体,互称为姐妹染色单体。两条单体在着丝粒处互相连接,该处缩窄,故又称为主缢痕。从着丝粒到染色体两端之间的部分称为染色体臂,如果着丝粒不在染色体的中央,则可区分为长臂(q)和短臂(p)。两臂的长度对于鉴别染色体是重要的。有

Y染色体的结构和作用

Y染色体(Y chromosome)是决定生物个体性别的性染色体的一种。男性的一对性染色体是一条x染色体和一条较小的y染色体。在雄性是异质型的性决定的生物中,雄性所具有的而雌性所没有的那条性染色体叫Y染色体。由于Y染色体传男不传女的特性,因此在Y染色体上留下了基因的族谱,Y-DNA分析现在已应用于家

染色体着丝粒的作用

染色体着丝粒(centromere)的主要作用是使复制的染色体在有丝分裂和减数分裂中可均等地分配到子细胞中。在很多高等真核生物中,着丝粒看起来像是在染色体一个点上的浓缩区域,这个区域包含着丝点 (希腊语 kínesis 运动; chóros 部位),又称主缢痕。此是细胞分裂时纺锤丝附着之处。在大部分

性染色体的概念和作用

人类体细胞具有46条染色体,其中44条(22对)为常染色体,另两条在性发育中起决定性作用,称为性染色体(sex chromosome)。目前已知人类有X和Y两种性染色体。女性的两条性染色体,大小与形态也完全相同,称X染色体。男性的一条与X相同,另一条则小得多,称Y染色体。Y染色体最重要的意义是决定男

B染色体的作用及特征

亦称多余染色体,是被称为A染色体的常染色体的对应词。在一组基本染色体外,所含的多余染色体或染色体断片称为B染色体,它们的数目和大小变化很多。一般在顶端都具有着丝粒,大多含有较多的异染色质。在减数分裂时不能和同样的常染色体配对,而且B染色体彼此之间配对能力也很差。在个体间数目和形状的变化是很显著的,同

什么是染色体端化作用?

中文名称端化作用英文名称terminalization定  义在减数第一次分裂的双线期至中期,交叉点朝配对染色体臂的远端移动。应用学科遗传学(一级学科),细胞遗传学(二级学科)

ph染色体有哪些重要作用?

  大量的资料表明,约有95%CML患者为ph阳性,即ph染色体对CML是特异性的,也可作为确诊CML的主要依据,根据ph的有无,还可鉴别与CML临床表现相似的血液病,如骨髓纤维化(ph阴性),另外,ph染色体可在发病前5年就出现在患者的骨髓细胞中,故有早期诊断的价值,还有报告指出,ph出现率可随病

辐射对植物染色体的诱变作用实验

实验方法原理:物理射 线的电离辐射,具有非常短的波长以及相应的较大频率,其穿透力很大,在空气中γ-射线,射程可达几百米,速度为30万公里/秒。因此,对植物给予一定剂量的照射,很容易引起基因突变和染色体畸变,常见的有染色体粘着,着丝点区域断裂,破坏纺锤丝形成,染色体或染色单体的断裂等细胞学现象。可

辐射对植物染色体的诱变作用实验

实验方法原理 物理射 线的电离辐射,具有非常短的波长以及相应的较大频率,其穿透力很大,在空气中γ-射线,射程可达几百米,速度为30万公里/秒。因此,对植物给予一定剂量的照射,很容易引起基因突变和染色体畸变,常见的有染色体粘着,着丝点区域断裂,破坏纺锤丝形成,染色体或染色单体的断裂等细胞学现象

Nature:探索“破碎染色体”在癌症中的作用

加州大学圣地亚哥分校的科学家们发现,在细胞分裂过程中,破碎的染色体片段在重新排列之前被拴在一起;破坏系链可能有助于防止癌症突变。健康的细胞努力维持我们DNA的完整性,但偶尔,一条染色体会从其他染色体中分离出来,在细胞分裂过程中分裂。然后,这些微小的DNA片段在新细胞中以随机顺序重新组装,有时会产生致

辐射对植物染色体的诱变作用实验

实验方法原理物理射 线的电离辐射,具有非常短的波长以及相应的较大频率,其穿透力很大,在空气中γ-射线,射程可达几百米,速度为30万公里/秒。因此,对植物给予一定剂量的照射,很容易引起基因突变和染色体畸变,常见的有染色体粘着,着丝点区域断裂,破坏纺锤丝形成,染色体或染色单体的断裂等细胞学现象。可通过细

无着丝粒染色体的概念和作用

指具有局限型着丝粒的染色体由于断裂而产生的不含着丝粒的染色体断片。一般是指较长的断片。无着丝粒染色体在分裂后期,通常因缺乏向两极移动的能力,所以成为迟延染色体,它在末期形成小核,不久即行消失。可是端粒和次生缢痕有时也行使次级的着丝粒的功能。

酵母人工染色体的结构组成和对应的作用

在 YAC载体中最常用的是 pYAC4 。由于酵母的染色体是线状的,因此其在工作状态也是线状的。但是,为了方便制备YAC载体, YAC 载体以环状的方式存在,并增加了普通大肠杆菌质粒载体的复制元件和选择标记,以便保存和增殖。复制元件YAC 载体的复制元件是其核心组成成分,其在酵母中复制的必需元件包括

细胞质对X染色体上基因的调节作用

哺乳动物性染色体♀XX,♂XY。X染色体上含有很多与性别无关的伴性基因。按理说,这样的基因♀性有两套,♂性只有1套,♀性基因产物也应是♂性基因产物地倍,可事实上并不是这样,二者产物基本相等。因为♀性的两个X染色体,在间期核中表现“异固缩现象”,即属于异染色质,染色深,处于失活状态。至于哪个细胞中哪条

细胞质对基因载体—染色体的调节作用介绍

受精的细胞质中的内含物的分布(色素、卵黄粒、线粒体等)是不均匀的,对染色体的影响也不一样。如小麦瘿蚊的个体发育中,瘿蚊卵跟果蝇相似,其卵的后端含有一种特殊的细胞质—极细胞质,在极细胞质区域的核内,保持了全部40条染色体,以后分化为生殖细胞。但位于其他细胞质区域的核丢失了32条染色体,只保留了8条,将

Y染色体的染色体结构

Y染色体(Y chromosome)是决定生物个体性别的性染色体的一种。男性的一对性染色体是一条x染色体和一条较小的y染色体。在雄性是异质型的性决定的生物中,雄性所具有的而雌性所没有的那条性染色体叫Y染色体。由于Y染色体传男不传女的特性,因此在Y染色体上留下了基因的族谱,Y-DNA分析现在已应用于家

x染色体的染色体结构

研究确认了X染色体上有1098个蛋白质编码基因,有趣的是,这1098个基因中只有54个在对应的Y染色体上有相应功能的等位基因,而且Y染色体比X染色体小得多。在2003年6月完成的详细分析研究报告中指出Y染色体上仅有大约78个基因,Y染色体甚至被戏称为X染色体的“错误版本”。X染色体中大约有10%的基

染色体上的组蛋白和非组蛋白各有何作用

非组蛋白大致包含下列三类蛋白质:①细胞核内大量的酶.包括DNA合成及修复过程中的DNA多聚酶和连接酶,核糖核酸(RNA)聚合酶,以及核酸和蛋白质如组蛋白在修饰过程中所需要的酶;②在染色体中起结构作用的蛋白质;③其他尚未阐明功能的蛋白质.非组蛋白在各种组织和细胞的分化及发育过程中以及在正常细胞向肿瘤细

关于非同源染色体的染色体的介绍

  染色体是细胞核中最重要的组成部分,在细胞分裂的间期,由于染色体分散于细胞核中,故而一般只看到染色较深的染色质,而看不到具一定形态特征的染色体。几乎在所有生物的细胞中,包括噬菌体(病毒)在内,在光学显微镜或电子显微镜下都可以看到染色体的存在。各个物种的染色体都各有特定的形态特征。在细胞分裂过程中,

人类染色体的染色体带的命名

  根据人类细胞遗传学命名的国际体制(ISCN)的规定,每条染色体都以显著的形态特征(着丝粒、染色体两臂的末端和某些带)作界标而区分为若干个区,每个区都含一定数量、一定排列顺序、一定大小和染色深浅不同的带,这就构成了每条染色体的带型。  区和带的命名是从着丝粒开始,向臂的远端序贯编号。"1"是最靠近

关于非同源染色体的染色体组的介绍

  细胞中的一组非同源染色体,它们在形态和功能上各不相同,但是携带着控制一种生物生长发育、遗传和变异的全部遗传信息,这样的一组染色体,叫做一个染色体组。  由于染色技术的发展,在染色体长度、着丝点位置、长短臂比、随体有无等特点的基础上,可以进一步根据染色的显带表现区分出各对同源染色体,并予以分类和编

关于检测染色体和染色体组畸变—染色体畸变试验的基本介绍

  染色体畸变试验是检测化学物质影响染色体数量和结构的基本方法。在化学物质安全性评价中常选体外CHL细胞染色体畸变、精原细胞染色体畸变试验等检测化学物质对染色体的影响。为了准确观察诱发的畸变频数,本试验收获细胞的时间应尽量提前至大多数细胞处于染毒后第1次有丝分裂时(Tucker,1996)。对于染色

染色体的组成

  染色体组型(Karyotype):描述一个生物体内所有染色体的大  小、形状和数量信息的图象。这种组型技术可用来寻找染色体歧变同特定疾病的关系,比如:染色体数目的异常增加、形状发生异常变化等。以染色体的数目和形态来表示染色体组的特性,称为染色体组型。虽然染色体组型一般是以处于体细胞有丝分裂中期的

A染色体的特征

A染色体是真核生物染色体的主要成员,是生命必须的,具有显著的遗传效应的染色体。在每种生物中,所有的个体具有相同的A染色体,而区别于B染色体。

A染色体的定义

A染色体指真核细胞染色体组的任何正常染色体,包括常染色体和性染色体,它是相对于额外染色体—B染色体而言的。

染色体的结构

  每条染色体由两条染色单体通过着丝粒相连,从着丝粒到染色体两端之间的部分称为染色体臂。由于着丝粒的位置不同,分为长臂和短臂,在臂的末端还有端粒,臂上还有次缢痕。Telomere端粒、Centromere着丝粒、Region区、Band带、p短臂、q长臂。

染色体的结构

染色体的超微结构显示染色体是由直径仅100埃(1埃=0.1纳米)的DNA-组蛋白高度螺旋化的纤维所组成。每一条染色单体可看作一条双螺旋的DNA分子。有丝分裂间期时,DNA解螺旋而形成无限伸展的细丝,此时不易为染料所着色,光镜下呈无定形物质,称之为染色质。有丝分裂时DNA高度螺旋化而呈现特定的形态,此