CeO2掺杂3YZrO2中的平衡晶界偏聚

氧化钇稳定二氧化锆是目前广泛应用的陶瓷热障涂层材料,它具有优良的隔热效果、高熔点、低的热导率和良好的化学稳定性,因而是一种很有发展潜力的热涨涂层材料。热障涂层由陶瓷表面涂层和金属缓冲层(金属粘结层)组成,氧通过陶瓷中气孔、微裂纹以及晶界到达缓冲层,使得在ZrO2陶瓷涂层与缓冲层之间生成氧化物,主要为Al2O3。当Al2O3膜形成一定厚度后,Al2O3膜在高温下相变而产生体积膨胀。由于涂层与基底间的热膨胀失配现象在氧化层中形成残余压应力,从而导致涂层开裂和剥落,这是导致热障涂层剥落失效的重要原因。在陶瓷涂层致密度不断提高的情况下,氧沿晶界到达缓冲层生成氧化物已成为热障涂层失效的重要原因之一。有研究证明Ce在晶界处偏聚可以抑制氧沿晶界的传递。而Ce的晶界偏聚又受基体材料中其他溶质元素的影响,因此本研究以掺杂CeO2的3Y-ZrO2中Y、Ce在晶界处的平衡偏聚为研究对象,目的是找出这两种元素晶界偏聚的相互作用关系。掺杂CeO2的3Y-......阅读全文

CeO2掺杂3YZrO2中的平衡晶界偏聚

氧化钇稳定二氧化锆是目前广泛应用的陶瓷热障涂层材料,它具有优良的隔热效果、高熔点、低的热导率和良好的化学稳定性,因而是一种很有发展潜力的热涨涂层材料。热障涂层由陶瓷表面涂层和金属缓冲层(金属粘结层)组成,氧通过陶瓷中气孔、微裂纹以及晶界到达缓冲层,使得在ZrO2陶瓷涂层与缓冲层之间生成氧化物,主要为

2.25Cr1Mo钢中P与Mo的平衡晶界偏聚

在工程实际中,沿晶界脆性断裂引起许多重大事故,预报和控制这些晶界脆性断裂,至今仍然是国际上面临的挑战。晶界偏聚与晶界脆化对材料脆性断裂有很重要的影响并越来越多地引起材料研究人员的重视。本文介绍了晶界偏聚理论的发展过程;简要介绍了Cr-Mo钢的研究发展过程及其几种主要失效形式;简要介绍了几种主要的表面

2.25Cr1Mo钢中磷的平衡及应力引起的非平衡晶界偏聚

溶质元素(杂质或合金元素)在晶界上的偏聚对工程材料的力学行为有着深刻的影响,多年来一直是冶金工作者和材料学工作者感兴趣的问题。溶质原子的晶界偏聚可分为平衡晶界偏聚和非平衡晶界偏聚。对平衡偏聚的研究起步比较早,理论趋于成熟,但对非平衡偏聚的研究目前还存在很多空白和未知的领域,尤其是应力作用引起的非平衡

应力作用下2.25Cr1Mo钢中磷的晶界偏聚

对加氢反应器随炉运行试样在146.67 MPa的作用应力下,分别进行125、200和400 h的等温回火脆化试验,然后对试验后试样进行俄歇电子能谱分析试验(AES),得到有、无应力下杂质元素P原子的晶界偏聚量.结果表明:有应力作用下的P原子的晶界偏聚量要比无应力下的要低,且冲击试样的断口形貌与晶界

基于晶界偏聚理论的应力与回火脆化作用的机理

应用平衡晶界偏聚理论模拟了应力与回火脆化相互作用后的杂质元素P的晶界偏聚过程,通过俄歇电子能谱试验对模拟计算结果进行验证,理论计算与试验结果的一致性表明:应力降低了杂质元素P的扩散系数,在无应力、468℃回火脆化处理过程中,杂质元素P的扩散系数为1.62×10-20m2/s,而在146.68 MPa

晶界上非对称有序偏聚形成二维界面超结构的新进展

  经典的McLean偏聚理论认为溶质/杂质在界面上一般以单层或亚单层无序方式形成偏聚,忽略了界面原子之间的相互作用,没有界面结构转变。近期,中国科学院金属研究所研究员杨院生团队与东北大学教授秦高梧团队合作,利用球差校正的HAADF-STEM技术在Mg-Nd-Mn三元体系中发现Nd/Mn溶质原子在线

热机械处理对连铸连轧微合金化CMn钢微观结构的影响

As作为钢中的有害元素伴随着薄板坯连铸连轧的整个过程,本文主要研究的是热机械处理对不同As含量钢的微观组织及As的微观分布的影响。利用透射电镜及俄歇电子能谱等手段分析含微量砷钢发现,经过高温下保温,As元素逐渐向晶界偏聚,当保温时间较短时,As元素以晶界偏聚为主,向外扩散较少;当保温时间较长时,As

12Cr1MoV钢恒温保持回火脆性的研究

本文对12CrlMoV钢在540℃恒温保持不同时间下的试样进行了拉伸试验和硬度测试的研究。结果表明:随恒温保持时间的延长,σb逐渐升高;σ0. 2、 δ、ψ先降低后升高,在恒温保持500h时达到最小。随着恒温保持时间的延长,试样的硬度呈现出递减的趋势。利用示波冲击试验,研究了12CrlMoV钢在54

概述聚偏氟乙烯的合成及处理

  PVDF可以利用气态的偏二氟乙烯单体通过自由基(或受控自由基)聚合过程合成。后续还要进行熔铸或溶液处理(比如溶液浇铸、旋涂或薄膜流延)。同时还要制备朗缪尔-布洛杰特薄膜。基于溶液的处理常用到的溶剂包括二甲基甲酰胺以及丁酮。在水性乳液聚合中,常用含氟表面活性剂,阴离子形式的全氟酸,来作为加工助剂,

聚偏氟乙烯的基本信息介绍

  聚偏二氟乙烯,简称PVDF,是一种高度非反应性热塑性含氟聚合物。其可通过1,1-二氟乙烯的聚合反应合成。溶于二甲基乙酰胺等强极性溶剂。抗老化、耐化学药品、耐气候、耐紫外光辐射等性能优良。可用作工程塑料,用于制密封圈耐腐蚀设备、电容器,也用作涂料、绝缘材料和离子交换膜材料等。

共晶不平衡结晶类型

共晶不平衡结晶类型。1、固相线偏离平衡位置,不但冷到固相线上凝固不能结束,甚至冷到共晶温度以下还有少量液相残留,最后这些液相转变为共晶体,形成所谓的不平衡共晶组织。2、共晶组织的分类及特点粗糙,粗糙界面共晶粗糙,光滑界面共晶光滑,光滑界面共晶,金属,金属及金属,金属间化合物共晶多为类共晶。

我国学者联合揭示纳米线中晶界结构的尺寸效应

  晶界是晶体材料中重要的缺陷之一。人们普遍认为在块体晶体材料中小角晶界(取向差小于15°)由位错墙构成,而大角晶界(取向差大于15°)则以结构单元而不是位错的形式存在。随着晶体材料的尺寸逐渐减小,大量存在的表面对材料的结构和变形行为会产生显著影响。图1 (a-d) 位错型晶界(DGB)和(e-h)

介晶(液晶)二聚物、三聚物的概念

介晶(液晶)二聚物、三聚物等------由通常是相同结构的两个、三个或更多连接介晶单元分子构成的介晶化合物;

弯曲晶界——石墨烯强度的提升剂

          莱斯大学的最新研究证明在一些特例中弯曲晶界可以提高多晶体的强度,而这为石墨烯的强化提供了途径,且同时会产生一个规模相当可观的电子转移能带。  上图中左侧图像是晶界的电脑模型,中间的图像是晶界显微模拟图像,这二者被认为与实际的晶界近乎完美的匹配,而右侧的图像取自于康奈尔大学的科学家

关于聚偏氟乙烯的应用领域介绍

  由于具有弹性、低重量、低导热性、高耐化学腐蚀性以及耐热性等多重优良性质,PVDF常用于制作电线的绝缘外皮。常用于绕线电路的细30号线以及印刷电路板常用PVDF绝缘。具有PVDF绝缘层的线缆常以PVDF的商标名而被称为“Kynar线”。  PVDF由于具有压电特性常用于生产触觉传感器阵列、廉价的应

聚偏氟乙烯的物理性质介绍

  PVDF主要用于对纯度有极高要求,同时需要抗溶剂及酸碱腐蚀的场合。比起其他含氟聚合物,比如聚四氟乙烯,PVDF的密度较低(1.78g/cm)。  PVDF可用于生产管材、板材、薄膜、基板以及线缆的绝缘外皮。同时,其还可进行注射成型或焊接,广泛用于化工、半导体、制药以及国防工业,比如它可以用于制造

晶界弛豫可大幅提升纳米晶高温合金抗蠕变性能

如何有效提升热—力—时间耦合作用下晶界的结构稳定性,进而抑制晶界高温软化和扩散蠕变,成为长期以来材料领域的一个重大科学难题,也是发展高性能高温合金的主要瓶颈之一。 《中国科学报》从中国科学院金属研究所沈阳材料科学国家研究中心获悉,近期该中心卢柯院士团队与武汉大学教授梅青松合作,在这一科学难

Ag/CeO2和Ni/CeO2模型催化剂的界面性能

Ce02具有很高的氧储存/释放能力,担载金属的氧化铈催化剂广泛应用于汽车尾气净化、低温水-气变换和乙醇水汽重整等重要的催化反应体系中。以Ce02为载体的金属Ag和Ni催化剂除了在以上重要催化反应中表现出良好的催化活性外,还具有低成本和易制备的特点,因而获得广泛应用。因此从原子-分子水平上研究此类催化

石墨烯晶界输运性质研究取得系列进展

  以石墨烯为代表的二维原子晶体材料的准粒子(如激子、狄拉克费米子等)由于量子限域效应,显示出室温量子霍尔效应等新奇量子特性,也促进了相关新型电子、光电子器件的应用等相关研究。获得本征的电学输运特性、光电特性等物理性质乃至最终的器件应用的关键在于大面积、高质量样品的生长。近年来,中国科学院物理研究所

N掺杂对非晶C薄膜的电子结构与光学性质的影响

用直流磁控溅射法制备了非晶C薄膜及N掺杂非晶C(a-C∶N)薄膜,用紫外-可见分光光谱仪、椭圆偏振仪、俄歇电子能谱(AES)等对薄膜进行了检测。结果表明:随源气体中N气含量的增加,透过率和折射率变小,而光学带隙先增大后减小;当薄膜中N的含量很少,N的掺入对sp3杂化C起稳定作用,使得薄膜光学带隙Eg

简述固态锂电池电解质的有机聚合物体系

  常规液态锂离子电池中使用的电解质和隔膜主要由有机成分组成,因此同样属于有机物质的有机聚合物是固态电解质基板的自然选择。有机聚合物电解质体系包括聚环氧乙烷(PEO)和结构上具有一定相似性的聚合物(聚氧丙烯、聚偏二氯乙烯、聚偏二氟乙烯)。  聚环氧乙烷因其与锂负极良好的相容性而成为有机聚合物固体电解

沿晶脆性断裂

沿晶脆性断裂  是指断裂路径沿着不同位向的晶界(晶粒间界)所发生的一种属于低能吸收过程的断裂。根据断裂能量消耗最小原理,裂纹的扩展路径总是沿着原子键合力最薄弱的表面进行。晶界强度不一定最低,但如果金属存在着某些冶金因素使晶界弱化(例如杂质原子P、S、Si、Sn等在晶界上偏聚或脱溶,或脆性相在晶界析出

用X射线能谱(TEM)分析晶界偏析的方法

本文利用EM400T透射电子显微镜和EDAX9100能谱仪研究微量元素在晶界的偏聚。通过本文采用的电子束直径小到40A的微探针,低背底样品台,沿晶界拉长束斑,分段积分等措施,明显地提高了分析灵敏度。用这种方法测量了含磷820ppm的Si-Mn高强度钢和含镁94ppm的GH169高温合金中P和Mg的晶

美石墨烯晶界硬度性能最新研究进展

  近日,美国哥伦比亚工程研究人员发现,即使由许多石墨烯小晶粒拼凑而成,石墨烯的硬度性能依然卓越。这一发现解决了之前理论模拟与实验之间存在的一些矛盾;之前的理论称石墨烯的晶界硬度是较强的,而试验预测小晶粒石墨烯的硬度要远远弱于完整的石墨烯晶格。该研究近期发表在Science杂志上。   石墨烯是由

晶界阻碍高温超导体内电流流动

  美国佛罗里达大学物理学教授彼得·赫希菲尔德和5位其他机构的研究人员表示,晶界(grain boundaries)是阻碍高温超导体内电流流动的原因。相关文章刊登在《自然·物理》杂志网站上。    当20世纪80年代末首次发现高温超导体后,科学家便认为高温超导体将给人类带来

科学家揭示纳米材料软化和硬化行为本质

  日前,中国科学院金属研究所沈阳材料科学国家(联合)实验室卢柯研究组发现通过适当合金元素的晶界偏聚可以提高晶界稳定性,从而可以大幅度调控纳米金属的强度。该研究得到科技部国家重大科学研究计划和国家自然基金资助。该成果发表于2017年3月24日出版的Science(《科学》)。  金属材料的强度或硬度

金属所在纳米金属中发现晶界稳定性控制的硬化软化行为

  金属材料的强度或硬度往往随晶粒尺寸减小而增加,遵循基于位错塞积变形机制的Hall-Petch关系,即强度的增加与晶粒尺寸的平方根成反比。而当晶粒尺寸低于某临界晶粒尺寸(通常为10-30纳米)时,金属的强度会偏离Hall-Petch关系,有些金属的强度不再升高甚至下降,这种纳米尺度下的软化现象通常

新疆理化所NTC热敏电阻材料研究取得系列进展

  NTC热敏电阻具有测温精度和可靠性高、互换性好、易实现远程测量和控制等特点,广泛应用于稳压、温度补偿、抑制浪涌电流、温度检测以及通讯设备的远距离控制等方面。因此多年来,设计和开发新型热敏电阻材料、复合热敏材料及高温热敏电阻材料一直是热敏电阻材料领域的研究热点。   中科院新疆理化技术研究所敏感

基于二氧化铈的非贵金属混合氧化物纳米催化剂研究

  二氧化铈(CeO2)是催化系统中应用非常广泛的一种组分,其中贵金属负载的CeO2基催化剂研究非常广泛,然而,这类催化材料存在起燃温度高、催化剂中毒、活性下降、重金属污染等缺点,因此,大量的研究工作致力于开发新的先进材料以期获得更好的性能。非贵金属CeO2基混合氧化物作为潜在的替代材料,能够有效地

群体中的遗传平衡

  群体中的遗传基因和基因型需要保持平衡,才能保证人种的世代繁殖。而一个群体所具有的全部遗传信息,亦即含有在特定位点的全部等位基因称为基因库(gene pool)。个体的基因型只代表基因库的一小部分。在研究群体变化、群体中遗传病的变化时,需要了解遗传的发病率及其遗传性状,这就要了解某一基因的