高速逆流色谱常用基本溶剂体系

高速逆流色谱常用基本溶剂体系表被分离物质种类基本两相溶剂体系辅助溶剂非极性或弱极性物质正庚(己)烷-甲醇氯烷烃正庚(己)烷-乙睛氯烷烃正庚己烷-甲醇(或乙睛)-水氯烷烃中等极性物质氯仿-水甲醇、正丙醇、异丙醇乙酸乙酯-水正己烷、甲醇、正丁醇极性物质正丁醇-水甲醇、乙酸上表中是根据被分离物质的极性列出一些基本的可供参考的溶剂体系,它包括非水体系和含水体系。溶剂系统的选择对于HSCCC分离十分关键。遗憾的是到目前为止溶剂系统的选择还没有充分的理论依据,而是根据实际积累的丰富经验来选择。通常来说,溶剂系统应该满足以下要求:溶剂系统不会造成样品的分解或变性样品中各组分在溶剂系统中有合适的分配系数,一般认为分配系数在0.2-5的范围内是较为合适的,并且各组分的分配系数值要有足够的差异,分离因子最好大于或等于1.5;溶剂系统不会干扰样品的检测;为了保证固定相的保留率不低于50%,溶剂系统的分层时间不超过30秒;上下两相的体积比合适,以免浪费......阅读全文

高速逆流色谱仪原理特点及应用

   高速逆流色谱法于1982年由美国国立卫生院Ito博士研制开发的一种新型的、连续高效的液液分配色谱技术,与其它色谱技术不同的是它不需任何固态载体,因此能避免固相载体表面与样品发生反应而导致样品的污染、失活、变性和不可逆吸附等不良影响。   高速.jpg    同时它也具有适用范围广、快速

高速逆流色谱制备分离紫甘薯花色苷

摘要采用高速逆流色谱法分离纯化紫甘薯花色苷。以正丁醇-乙酸乙酯-0. 5% 乙酸( 3∶ 1∶ 4,V/V) 为溶剂体系,上相为固定相,下相为流动相,流速2 mL/min,进样量300 mg,分离得到两种花色苷的混合物; 混合物再以0. 2% 三氟乙酸-正丁醇-甲基叔丁基醚-乙腈( 6∶ 5∶ 2∶

高速逆流色谱讲座武汉站成功举办

  2010年,全球唯一专注于高速逆流色谱技术推广的上海同田生物开展了HSCCC技术全国巡回讲座;  继4月的中山大学、重庆大学站后,5月13日,高速逆流色谱技术讲座武汉华中农业大学成功举办!     本次会议上,来自华中农业大学、武汉大学、湖北中医药大学、湖北工业大学、同济药学院、

简介高速逆流色谱仪的技术特点

  1、应用范围广,适应性好  由于溶剂系统的组成及配比可以是无限多的,因而从理论上讲可以适用于任何极性范围内样品的分离,在分离天然化合物方面具有其独到之处。由于聚四氟乙烯管中的固定相为液体不需要固相载体,因而可以消除固-液色谱中由于使用固相载体而带来的吸附损失,特别适用于分离极性物质。  2、操作

影响高速逆流色谱仪的使用因素

   1、固定相的保留值 在逆流色谱中,留在管中固定相的量是影响溶质峰分离度的一个重要因素,高保留量将会大大改进峰分离度。  仪器对保留值的影响(外因) 研究表明:螺旋管支持件的自转半径r与公转半径R之比B值是一个影响两相互不混溶溶剂在旋转螺旋管内保留的关键因素。用大直径的支持件使值进一步提高,能导

高速逆流色谱仪技术的发展历程

高速逆流色谱法是建立在单向性流体动力平衡体系之上的一种逆流色谱分离方法,它是在研究旋转管的流体动力平衡时偶然发现的。当螺旋管在慢速转动时,螺旋管中的两相都从一端分布到另一端。用某一相作移动相从一端向另一端洗脱时,另一相在螺旋管里的保留值大约50%,但这一保留量会随着移动相流速的增大而减小,使分离效率

高速逆流色谱仪的相关技术原理

  HPCPCTM是一个新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料的情况下,执行复杂的化学物质的混合物分离。它以液体溶剂替代了传统的制备型高效液相色谱填充柱为固定相和另一液体溶剂做流动相在一个高性能的离心系统分区进行操作。不需使用固态固定相,而是利用离心力产生的恒定力场将固定相保留在由

高速逆流色谱的动态平衡性

高速逆流色谱仪在运行过程中,设备内部的色谱柱线圈以公转和自转的两种方式同时高速旋转,维持很高的分离塔板数,因而旋转过程的动态平衡性对设备性能至关重要,也是生产厂家的技术核心部分,的动态平衡取决于仪器的整体设计、生产、机械加工、线圈缠绕、调试和应用等多种因素。线圈的设计:线圈材质一般使用PTFE、31

制备型高速逆流色谱分离纯化香菇多糖

摘 要 利用高速逆流色谱仪, 研究了双水相系统对香菇多糖的分离。溶剂系统为w ( PEG1000 ) ∶w (K2HPO4 ) ∶w (KH2 PO4 ) ∶w (H2O) = 0. 5∶1. 25∶1. 25∶7. 0,在转速为500 r/min,流速为1. 5 mL /min的条件下,成功分离了

关于高速逆流色谱的应用领域介绍

  (1)天然产物已知有效成分的分离纯化  (2)化学合成物质的分离纯化  (3)中药一类、五类新药的开发  (4)中药指纹图谱和质量控制研究  (5)抗生素的分离纯化  (6)天然产物未知有效成分的分离纯化(新化合物开发)  (7)海洋生物活性成分的分离纯化  (8)放射性同位素分离  (9)多肽

关于高速逆流色谱的中心部分简介

  (a) ITO多层线圈分离柱,它是由100-200米长、内径为1.6mm左右的聚四氟乙烯管沿具有适当内径的内轴共绕十多层而成,其管内总体积可达300mL左右。(b)平衡器,它可以调节重量,它的作用是让(a), (b)相对于中心轴两边重量平衡。当在旋转控制器的控制下,在齿轮传动装置作用下,(a),

高速逆流色谱是制备色谱的全新方法

  制备色谱是指采用色谱技术制备纯物质,即分离、收集一种或多种色谱纯物质。制备色谱中的“制备”这一概念指获得足够量的单一化合物,以满足研究和其它用途。制备色谱的出现,使色谱技术与经济利益建立了。制备量大小和成本高低是制备色谱的两个重要指标。其中,气相制备色谱主要用于石油化工产品和挥发性天然产物的色谱

简介逆流色谱法的极弱极性体系(无水体系)

  大多数用于HSCCC分离的无水体系都是用乙腈代替水与小极性溶剂组成基本两相,再根据需要在上下两相中加入不同体积比且极性位于小极性溶剂和乙腈之间的惰性溶剂来调节溶剂系统的极性。该溶剂系统可以用来分离极性非常小的物质,这种物质一般含有较多碳,基本上不含有极性基团,适用于分离小极性的甾体、萜类以及多碳

高速逆流色谱仪的技术发展简介

  技术发展  1.[2]20世纪70年代,出现了液滴逆流色谱(DCCC)特点:  (1)流体静力学原理(Hydrostatic equilibrium system,HSES)  (2)分离时间过长、连接处容易出现渗漏等  2.20世纪70年代出现了离心分配色谱仪(Centrifugal part

高速逆流色谱技术制备石杉碱甲单体

摘要:目的 从千层塔植物提取物中分离制备石杉碱甲单体。方法 利用高速逆流色谱技术,通过寻找合适的两相溶剂体系及工艺参数,研究及讨论石杉碱甲分离制备的新方法。结果 以n2Hexane /n2BuOH /H2O (4∶1∶5,V /V /V)为两相溶剂体系,在优化的工艺参数条件下,利用高速逆流色谱技术,

简述高速逆流色谱仪的应用领域

  应用领域  (1)天然产物已知有效成分的分离纯化  (2)化学合成物质的分离纯化  (3)中药一类、五类新药的开发  (4)中药指纹图谱和质量控制研究  (5)抗生素的分离纯化  (6)天然产物未知有效成分的分离纯化(新化合物开发)  (7)海洋生物活性成分的分离纯化  (8)放射性同位素分离 

高速逆流色谱分离制备胡椒中的胡椒碱

摘 要:采用高速逆流色谱(high-speed countercurrent chromatography,HSCCC)法从胡椒中分离制备胡椒碱。HSCCC的溶剂系统条件为正己烷- 乙酸乙酯- 甲醇- 水(1:1:1:1,V/V)。从5g 粗提物中可一次分离得到纯度为98.72% 的胡椒碱单体1.5

浅述高速逆流色谱仪的工艺原理

 高速逆流色谱仪是一种新的液相色谱技术,利用液液两相的逆流分配,在没有固体填料、不需使用固态固定相的情况下,而是利用离心力产生的恒定力将固定相保留在由管道连接的一系列的腔体中,实现复杂化学物质的混合物分离。它以液体溶剂为固定相,螺旋柱在行星运动时产生的离心力,使互不相溶的两相不断互相混合,同时保留其

高速逆流色谱分离茶黄素单体的初步研究

摘 要:不同溶剂系统和NaHCO3 前处理茶色素复合物对高速逆流色谱(HSCCC)分离茶黄素分离效果比较,以及对仪器参数的优化,探索应用H S C C C 分离茶黄素单体。试验结果表明:采用溶剂系统乙酸乙酯、正己烷、甲醇和水(3:1:1:6,V/V)具有较佳的分离效果;NaHCO3 前处理明显有助于

高速逆流色谱在天然产物分离中的应用

  20世纪80年代,美国国立卫生研究院(National Institutes of Health,NIH)Ito等在液-液分配色谱的基础上发明了高速逆流色谱(high-speed countercurrent chromatography,HSCCC)。HSCCC技术主要有离子对逆流色谱(ion

高速逆流色谱分离纯化防风中升麻素苷

摘要建立了高速逆流色谱分离制备防风中有效成分升麻素苷和5-O-甲基维斯阿米醇苷的方法。防风根的粉末经甲醇浸泡提取和减压蒸馏,得粗提浸膏。以V( 乙酸乙酯) ∶ V( 正丁醇) ∶ V( 水) = 2∶7∶9 为溶剂,上相为固定相,下相为流动相,流速2. 0 mL/min。从316 mg 防风粗提物中

高速逆流色谱的影响因素及技术发展

  影响因素  1.固定相的保留值  在逆流色谱中,留在管中固定相的量是影响溶质峰分离度的一个重要因素,高保留量将会大大改进峰分离度。  仪器对保留值的影响(外因) 研究表明:螺旋管支持件的自转半径r与公转半径R之比B值是一个影响两相互不混溶溶剂在旋转螺旋管内保留的关键因素。用大直径的支持件使值进一

高速逆流色谱的技术发展及研究发展

  技术发展  二十世纪六十年代,首先在日本,随后在美国国家医学研究院发现了一种有趣的现象:即互不相溶的两相溶剂在绕成螺旋形的小孔径管子里分段割据,并能实现两溶剂相之间的逆向对流。Ito及其后来者在此基础上研究并设计制造出了一系列逆流色谱装置,早期的是封闭型的螺旋管行星式离心分离仪CPC(coil

高速逆流色谱法分离纯化绿原酸研究

摘 要:利用高速逆流色谱技术分离纯化金银花中的绿原酸。选择正丁醇- 冰乙酸- 水(4:1:5,V/V)系统来分离,分离结果经高效液相(HPLC)检测纯度达到98.1%,绿原酸的得率为95%。关键词:绿原酸;高速逆流色谱;分离    绿原酸(chlorogenic acid)为多酚类化合物,具有抗菌、

高速逆流色谱法分离制备刺梨黄酮成分

摘 要:应用高速逆流色谱法分离制备了刺梨中的黄酮类成分。以氯仿- 甲醇- 水(4:4:2,V/V)为两相溶剂系统,在主机转速为800r/min、流速1.0ml/min、检测波长254nm 条件下进行分离制备,所得分离收集液经高效液相色谱法检测,结果表明,从刺梨黄酮粗提物中分离得到了纯度分别为75.6

高速逆流色谱法分离纯化红曲色素组分

摘 要:采用高速逆流色谱法(HSCCC)分离纯化红曲发酵产品中6种Azaphilone类色素组分。筛选弱极性分离溶剂系统正己烷- 醋酸乙酯- 甲醇- 水,研究6 种色素组分在不同溶剂体系中的分配系数,建立两步逆流萃取分离的技术路线。经过HPCCC 分离纯化和丙酮结晶操作,得到6 种高纯度的Azaph

逆流色谱法的弱极性体系相关介绍

  正己烷体系:该体系是HSCCC分离常用的体系之一,基本两相由正己烷和水组成,可根据需要在上下两相中加入不同体积比且极性位于正己烷和水之间的惰性溶剂来调节溶剂系统的极性。一般加入正丁醇、甲醇、乙醇、醋酸乙酯、乙腈、氯仿作为极性调节剂,组成三元或四元溶剂体系。其中运用最多的是正己烷-醋酸乙酯-甲醇-

高速逆流色谱技术全国巡讲成都站成功举办

        10月29日,由上海同田公司主办的高速逆流色谱技术全国巡讲成都站在成都中医药大学成功举办。        除成都中医药大学外,四川大学、四川农业大学、西南交通大学、西南民族大学、中科院成都生物研究所等共计16个单位排派出了相应人员参会。        会后,

简介高速逆流色谱仪的发展趋势简介

  为了克服HSCCC理论研究相对滞后的不足,有不少研究人员正从事理论研究,试图建立完善的理论基础来指导溶剂体系的选择,以期使HSCCC尽快从一种分离技术发展成为一门分离科学。HSCCC一种独特的不用固态载体的液液分配色谱技术,是一种能实现连续有效分离的实用分离制备技术,能采用多种多样的溶剂系统对任

J型高速逆流色谱仪演进及未来(三)

2.2.2.1 系统死体积         高速逆流色谱仪设备,除去有效柱容积部分,都可以称之为死体积,这些管路不参与分离过程,只作为必要连接管路存在,所以死体积越少越好。通常最常见的方法可将机器外部连接管路在压力允许的情况下通过选用更细更短的管路的简单方法来尽量减少死体积的存在,而机器内部的死