超高分辨直接观测基因表达的染色质时空调控
生命科学的一个基本问题是在个体发育中,单个细胞如何分化成各种类型的组织细胞。这个过程高度依赖于基因表达的精确时空调控,而这种细胞特异基因表达与染色质的调控密切相关。比如,不同的顺式调控原件增强子能够在不同细胞中选择性地激活目标基因。每个基因经常由分布在千碱基(kb)甚至兆碱基(Mb)以外的多个增强子来调节,而增强子能够选择性地激活靶基因常常归因于基因组的三维空间结构。因此,在纳米尺度、千碱基分辨率条件下研究染色质的三维结构对解析胚胎发育过程中细胞分化与细胞命运决定至关重要。 基于高通量测序的染色质构象捕获技术(3C和Hi-C)已经鉴定出大量的组织特异染色质环(loops),并发现了胚胎发育不同时期的特异染色质拓扑结构域(TADs)。但是这些研究主要是群体细胞分析的结果,并不能知道单细胞行为是否有所不同。单细胞Hi-C方法虽然揭示了染色质结构的异质性,但其分辨率不足以在单细胞水平看到清晰的TAD结构。2018年11月份,哈佛......阅读全文
超高分辨直接观测基因表达的染色质时空调控
生命科学的一个基本问题是在个体发育中,单个细胞如何分化成各种类型的组织细胞。这个过程高度依赖于基因表达的精确时空调控,而这种细胞特异基因表达与染色质的调控密切相关。比如,不同的顺式调控原件增强子能够在不同细胞中选择性地激活目标基因。每个基因经常由分布在千碱基(kb)甚至兆碱基(Mb)以外的多个增
超高分辨成像
超高分辨成像常规共聚焦的XY分辨率只有200nm左右,奥林巴斯ZLFV-OSR超高分辨技术可达到120nm,适用于大部分样品,无需特殊荧光染料,常规荧光染料、荧光蛋白均可进行成像,最多可实现4色同步超高分辨率成像。
STED超高分辨成像
STED超高分辨成像采用受激发损耗(STED)技术,实现XY最小分辨率≤50nm,Z轴最小分辨率≤130nm。固态长寿命损耗激光器:592nm,660nm,775nm,实现不同染料的超高分辨成像,可见光全光谱覆盖。STED WHITE 油浸物镜 (HC PL APO 100x/1.40 OIL),
研究揭示染色质修饰调控植物基因表达新机制
8月6日,中国科学院分子植物科学卓越创新中心/植物生理生态研究所植物逆境生物学研究中心植物分子遗传国家重点实验室何跃辉研究组(与刘仁义研究组合作)和杜嘉木研究组(与美国威斯康辛大学钟雪花研究组合作)在《自然-遗传学》背靠背分别发表题为Polycomb-mediated gene silencin
调控基因表达的“染色质环”新因子筛选获进展
中国科学院广州生物医药与健康研究院、生物岛实验室研究员姚红杰课题组通过系统性筛选在基因组上与CTCF共定位的转录因子,鉴定出大量与CTCF存在高共定位率的新转录因子,并选取了转录因子BHLHE40进行后续的功能验证,发现BHLHE40可以调控CTCF在基因组上的结合,进而影响其介导的远距离染色质
利用纳米孔测序技术揭示基因表达的染色质调控基础
作为染色质的基本单元,核小体由大约147 bp的DNA和组蛋白八聚体(H2A, H2B, H3和H4)组成。核小体的动态定位和折叠组织会产生两种不同的染色质状态:“开放”(open)和“闭合”(closed)。核小体的定位和染色质状态的动态变化对以DNA为模板的生物学过程(比如,转录、DNA复制
生命科学:染色质修饰沉默植物基因表达领域获重要突破
在国家自然科学基金(项目编号:31721001)等资助下,中国科学院上海生命科学研究院植物逆境生物学研究中心何跃辉课题组在染色质修饰沉默植物基因表达领域获重要突破,发现了植物特有的染色质凝缩蛋白EMF1与含BAH结构域的蛋白形成BAH-EMF1蛋白复合体,以介导高等植物基因沉默的分子机制。研究成
染色质修饰如何调控基因表达?-中国学者提出新见解
中科院分子植物科学卓越创新中心/植物生理生态研究所植物逆境生物学研究中心的研究人员最新发表两篇Nature Genetics文章,利用生化、分子、遗传、组学及结构生物学等研究方法,分别揭示了植物特有染色质凝缩蛋白EMF1与含BAH结构域的SHL和EBS形成BAH-EMF1复合体而介导植物基因沉默
拟南芥基因组加倍导致的三维染色质结构及基因表达调控
6月11日,《核酸研究》(Nucleic Acids Research)杂志在线发表了中国科学院分子植物科学卓越创新中心/植物生理生态研究所植物分子遗传国家重点实验室方玉达研究组题为The effects of Arabidopsis genome duplication on the chro
LIGHTNING超高分辨率应用实例
随着光学技术的日益普及,越来越多的研究者将其应用到了与人类健康密切相关的领域,但传统的共聚焦成像已经不能满足需求,科学家们希望在更精细的维度深入探索人类疾病的发展进程,了解病原体和宿主的相互作用,以及追踪长时间的生物学过程。 LIGHTNING 显著提升共聚焦分辨率和信噪比?今天给大家分享的是非常适
什么是基因表达调控?基因表达调控有什么意义
意义:1.适应环境、维持生长和增殖:生物体赖以生存的外环境是在不断变化的,为了生存,所有活细胞都必须对外环境变化作出适当反应,调节代谢,以适应环境变化。生物体适应环境、调节代谢的能力与蛋白质分子的生物学功能有关。而蛋白质的水平又受基因表达的调控。2.维持个体发育与分化:多细胞生物调节基因的表达除为适
天津工业生物所获得λ噬菌体基因表达的高分辨率图谱
λ-噬菌体作为一种被广泛研究的有机体,已经成为研究基因调控的最简单模式菌株。无论是基因表达的集中研究还是现代矩阵杂交技术的应用,都阐明了λ-噬菌体在生长过程中基因功能的复杂性。最近兴起了一种核糖体图谱新技术,通过捕捉细胞内核糖体的瞬间翻译位点来为大家提供更细致和精准的基因表达图谱。
超高分辨四极杆串联傅里叶变换质谱仪
超高分辨四极杆串联傅里叶变换质谱仪是一种用于化学领域的分析仪器,于2016年10月21日启用。 技术指标 1.质量范围:100 -10,000 m/z (离子传输模式);100 -6,000 m/z (质量选择模式) 2.多级串联质谱(保证MS3) 3.在液质联用实验中自动隔离最强离子并
超高分辨四极杆串联傅里叶变换质谱仪
超高分辨四极杆串联傅里叶变换质谱仪是一种用于化学领域的分析仪器,于2016年10月21日启用。 技术指标 1.质量范围:100 -10,000 m/z (离子传输模式);100 -6,000 m/z (质量选择模式) 2.多级串联质谱(保证MS3) 3.在液质联用实验中自动隔离最强离子并
超高分辨率显微技术发展
超高分辨率显微技术发展只有十多年时间,已经在细胞生物学、免疫学、神经生物学、微生物学及交叉学科等多个领域获得重要应用,并于2014年获得诺贝尔化学奖。分析测试共享中心购置的徕卡TCS SP8 STED 3X纳米显微平台是超高分辨显微技术中高端产品的杰出代表,在成像分辨率、成像速度、深度及多色光谱式成
750万,这一单位采购超高分辨质谱仪
项目概况 超高分辨质谱仪采购项目 招标项目的潜在投标人应在详见其他补充事宜获取招标文件,并于2024年04月23日 10点00分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:2023-JH1903-W1037 项目名称:超高分辨质谱仪采购项目 预算金额:750.000000
基因表达的定义
基因表达(gene expression)是指将来自基因的遗传信息合成功能性基因产物的过程。基因表达产物通常是蛋白质,所有已知的生命,都利用基因表达来合成生命的大分子。
-环境影响基因表达
日复一日、年复一年,我们的基因不断地和我们所生活的环境、邻居、家人,以及我们自己的心态“对话”。这些社会性互动的结果会进入我们细胞的控制室,改变基因的强弱表达,从而影响我们的习性、行为、生理、心理与健康。美国知名科学作家戴维·多布斯日前撰写了《基因的社会生活——改变你的分子组成》一文,介绍了科学
人脑基因表达图集
小鼠的全基因组基因表达的高分辨率图已经问世几年时间了,但是,对于人脑而言,此前只发表过相对来说比较粗糙的分布图。这是由于与小鼠相比,人脑规模增大了1000倍,以及死后组织供应有限和质量较差等因素所导致的。现在,Michael Hawrylycz及其在“艾伦脑科学研究
什么是基因表达?
基因表达(gene expression)是指将来自基因的遗传信息合成功能性基因产物的过程。基因表达产物通常是蛋白质,所有已知的生命,都利用基因表达来合成生命的大分子。
什么是基因表达?
因的表达过程是将DNA上的遗传信息传递给mRNA,然后再经过翻译将其传递给蛋白质。在翻译过程中tRNA负责与特定氨基酸结合,并将它们运送到核糖体,这些氨基酸在那里相互连接形成蛋白质。这一过程由tRNA合成酶介导,一旦出现问题就会生成错误的蛋白质,进而造成灾难性的后果。值得庆幸的是,tRNA分子与氨基
基因表达的步骤
基因表达可以通过对其中的几个步骤,包括转录,RNA剪接,翻译和翻译后修饰,进行调控来实现对基因表达的调控。基因调控赋予细胞对结构和功能的控制,基因调控是细胞分化、形态发生以及任何生物的多功能性和适应性的基础。基因调控也可以作为进化改变的底物,因为控制基因表达的时间、位置和量可以对基因在细胞或多细胞生
电流激活基因表达
原文地址:http://news.sciencenet.cn/htmlnews/2023/8/505925.shtm
基因表达的步骤
基因表达可以通过对其中的几个步骤,包括转录,RNA剪接,翻译和翻译后修饰,进行调控来实现对基因表达的调控。基因调控赋予细胞对结构和功能的控制,基因调控是细胞分化、形态发生以及任何生物的多功能性和适应性的基础。基因调控也可以作为进化改变的底物,因为控制基因表达的时间、位置和量可以对基因在细胞或多细胞生
基因差异表达技术
真核生物中,从个体的生长、发育、衰老、死亡,到组织的得化、调亡以及细胞对各种生物、理化因子的应答,本质上都涉及基因的选择性表达。高等生物大约有30000个不同的基因,但在生物体内任意8细胞中只有10%的基因的以表达,而这些基因的表达按特定的时间和空间顺序有序地进行着,这种表达的方式即为基因的差异表达
基因表达的机制
转录转录过程由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。基因组DNA由两条反向平行和反向互补链组成,每条链具有5'和3'末端。这两条链分别称为“模板链”(产生RNA转录物的模板)和“编码链”(含有转录本序列的DN
基因表达的机制
转录转录过程由RNA聚合酶(RNAP)进行,以DNA为模板,产物为RNA。RNA聚合酶沿着一段DNA移动,留下新合成的RNA链。基因组DNA由两条反向平行和反向互补链组成,每条链具有5'和3'末端。这两条链分别称为“模板链”(产生RNA转录物的模板)和“编码链”(含有转录本序列的DN
基因表达的调控
转录调控可分为三种主要途径:1)遗传调控(转录因子与靶标基因的直接相互作用);2)调控转录因子与转录机制相互作用,3)表观遗传调控(影响转录的DNA结构的非序列变化)。通过转录因子直接调控靶标DNA表达是最简单和最直接的转录调控改变转录水平的方法。基因的编码区周围通常都具有几个蛋白质结合位点,具有调
基因表达的概念
基因表达(gene expression)是指将来自基因的遗传信息合成功能性基因产物的过程。基因表达产物通常是蛋白质,所有已知的生命,都利用基因表达来合成生命的大分子。
基因的表达过程
基因的表达过程是将DNA上的遗传信息传递给mRNA,然后再经过翻译将其传递给蛋白质。在翻译过程中tRNA负责与特定氨基酸结合,并将它们运送到核糖体,这些氨基酸在那里相互连接形成蛋白质。这一过程由tRNA合成酶介导,一旦出现问题就会生成错误的蛋白质,进而造成灾难性的后果。值得庆幸的是,tRNA分子与氨