Cell:非吸烟肺癌的基因组重排早于癌症确诊前30年

在一项新的研究中,来自韩国科学技术高级研究院(KAIST)和首尔大学等研究机构的研究人员发现早在童年和青春期发生的灾难性基因组重排可导致非吸烟者在晚年患上肺癌。这一发现发有助于解释一些与非吸烟有关的肺癌是如何产生的。相关研究结果近期发表在Cell期刊上,论文标题为“Tracing Oncogene Rearrangements in the Mutational History of Lung Adenocarcinoma”。图片来自Cell, 2019, doi:10.1016/j.cell.2019.05.013 这些研究人员证实非吸烟者体内的基因融合大多较早地发生,有时早在儿童期或青春期,平均而言在肺癌确诊前三十年发生。这项研究表明,这些携带致癌种子(oncogenic seed)的突变肺细胞几十年来一直处于休眠状态,直到进一步的许多其他突变充分积累才进展为肺癌。这是首次揭示肺腺癌基因组结构变异景观的研究。 肺癌是......阅读全文

Cell:非吸烟肺癌的基因组重排早于癌症确诊前30年

  在一项新的研究中,来自韩国科学技术高级研究院(KAIST)和首尔大学等研究机构的研究人员发现早在童年和青春期发生的灾难性基因组重排可导致非吸烟者在晚年患上肺癌。这一发现发有助于解释一些与非吸烟有关的肺癌是如何产生的。相关研究结果近期发表在Cell期刊上,论文标题为“Tracing Oncogen

Cell:单分子测序揭示惊人的基因组重排

  科学家们发现,生活在池塘里的单细胞生物Oxytricha trifallax有一种非凡的能力,它们能在交配时将DNA打碎并快速重排这些片段。这项研究发表在上一期的Cell杂志上。  Oxytricha的基因重排是一个非常精密的过程,“这是大自然早期一种的复杂化尝试,”文章的资深作者,Prince

Cell:单分子测序揭示惊人的基因组重排

  科学家们发现,生活在池塘里的单细胞生物Oxytricha trifallax有一种非凡的能力,它们能在交配时将DNA打碎并快速重排这些片段。这项研究发表在上一期的Cell杂志上。  Oxytricha的基因重排是一个非常精密的过程,“这是大自然早期一种的复杂化尝试,”文章的资深作者,Prince

基因组重排的定义

基因组重排将重组的对象从单个基因扩展到整个基因组,可以在更为广泛的范围内对菌种的目的性状进行优化组合。

基因组重排的原理

1998年Maxygen公司的Stemmer等人提出了一种新的分子育种方法——全基因组重排技术,这种技术是分子定向进化在全基因组水平上的延伸,它将重组的对象从单个基因扩展到整个基因组-,因此可以在更为广泛的范围内对菌种的目的性状进行优化组合。基因组重排技术主要在传统诱变的基础上与原生质体融合相结合进

基因组重排的定义

基因组重排将重组的对象从单个基因扩展到整个基因组,可以在更为广泛的范围内对菌种的目的性状进行优化组合。

基因组重排的应用介绍

基因组重排技术结合了传统诱变技术和细胞融合技术,是一项对整个微生物基因组重排的新型育种技术。基因组重排技术通过多亲本原生质体递归融合,可以使工程菌快速获得多样复杂优良表型,并且无须了解其基因组学、代谢组学等具体背景。介绍了基因组重排技术的过程及应用,展现了基因组重排技术的优点,并给出了基因组重排技术

基因组重排的应用优势

微生物是生产氨基酸、抗生素、抗病毒剂和酶制剂等生物制品的重要来源。因此,如何提高微生物的产量或是增加其抗性一直以来是微生物育种的中心话题。Stemmer等在1994年率先提出DNA重排技术,该技术是一种体外定向进化分子的方法,在一定程度上模仿生物体自然进化过程中减数分裂期等位基因间的DNA片段交换。

基因组重排的重组类型

基因重组是指一个基因的DNA序列是由两个或两个以上的亲本DNA组合起来的。基因重组是遗传的基本现象,病毒、原核生物和真核生物都存在基因重组现象。减数分裂可能发生基因重组。基因重组的特点是双DNA链间进行物质交换。真核生物,重组发生在减数分裂期同源染色体的非姊妹染色单体间,细菌可发生在转化或转导过程中

基因组重排技术的特点介绍

基因组重排技术结合了传统诱变技术和细胞融合技术,是一项对整个微生物基因组重排的新型育种技术。基因组重排技术通过多亲本原生质体递归融合,可以使工程菌快速获得多样复杂优良表型,并且无须了解其基因组学、代谢组学等具体背景。介绍了基因组重排技术的过程及应用,展现了基因组重排技术的优点,并给出了基因组重排技术

基因组重排的重组过程

二阶体中的两条染色单体在相应的位点发生断裂,断裂的两端成“十”字形重接,产生新的染色单体。每一条新染色单体之间的接点的一端包含来自一条染色单体的物质,另一端包含另一条染色单体的物质。发生重组的必须条件是两条DNA链的互补性。每条染色单体包含一条长的双链DNA,发生重组的断裂位点依赖于位点附近碱基的互

基因组重排的定义和发生节点

基因是一个包含必要的信息,在可控制的方式生产功能的RNA产物的核酸段。它们包含这个产品是在什么条件下发号施令的监管区域,转录区域发号施令RNA的产品序列,和/或其他功能序列。身体发育和生物体的表型可以想到作为一个相互交融的基因与环境的产品,可以继承的单位和基因。主要发生在减数第一次分裂前期的交叉互换

基因组重排的重组方法介绍

基因组重排技术大致的过程可分为突变体库的构建、原生质体融合与融合子筛选、递归原生质体融合三个基本环节。首先需要对常规的菌种进行传统诱变从而建立突变体库,诱变的方式有紫外诱变、X射线诱变、化学诱变剂诱变等,其诱变依然有其不定向性。因此要在此基础上筛选拥有较优良性状的菌株构建突变体库。接下来是原生质体的

Cell:揭示肺癌转移新机制

  众所周知,癌细胞由于其特殊的代谢作用,会受到由自由基引起的氧化应激的影响。癌细胞的特征是高摄取和高利用葡萄糖,这是控制癌细胞分裂和转移能力的众多因素之一。通过对小鼠和人体组织的研究,两个独立的研究小组现在已经揭示了当癌细胞转移到身体其他部位时,这些环境是如何相互作用的。图片来源:Cell  当癌

揭示eccDNA新功能—驱动神经母细胞瘤基因组重排

  在刚刚过去不到一个月的时间,染色体外环状DNA(eccDNA)重大科研成果相继刊登上Nature、Cell、Nature Genetics等重量级期刊,这无疑将eccDNA推向21世纪20年代科学研究的风口浪尖,吸引无数科学工作者的眼球。前期报道表明eccDNA能导致原癌基因扩增,极大地促进肿瘤

Cell-Reports:科学家揭示肺癌如何扩散

  科学家们利用显微图像揭示将细胞绑定在一起的蛋白质在肺癌细胞中是如何被切断,以便癌细胞可以冲出“重围”和蔓延,相关研究公布在Cell Reports上。  英国曼彻斯特癌症研究所研究人员在发现,癌细胞绑定在一起的纽带(受到一种蛋白质Tiam 1控制)被“切碎”后,癌细胞会扩散。健康细胞会常规杀灭旧

天津大学科研团队发现精准控制基因组重排方法

  5月22日,天津大学元英进教授带领的合成生物学研究团队在《自然·通讯》期刊同期发表三篇研究长文,介绍了精确控制基因组重排技术等一系列研究成果。该成果填补了基因组结构变异的技术空白,提高了细胞工厂的生产效率,加速了微生物的进化和生物学知识的发现。这是继人工合成酵母染色体打破非生命物质和生命物质界限

Nature-Genetics-揭示eccDNA功能—驱动神经母细胞瘤基因组重排

  在刚刚过去不到一个月的时间,染色体外环状DNA(eccDNA)重大科研成果相继刊登上Nature、Cell、Nature Genetics等重量级期刊,这无疑将eccDNA推向21世纪20年代科学研究的风口浪尖,吸引无数科学工作者的眼球。前期报道表明eccDNA能导致原癌基因扩增,极大地促进肿瘤

抗体基因重排

  抗体的L链是由C、V、J三个基因簇编码的,H链由C、V、D、J四个基因簇编码的。V是编码可变区,有300个种类;D编码高变区,有15 ~ 20个种类;J编码连接V、C的结合区,有4~5个种类;C编码恒定区,仅有一种。这些外显子通过多种多样的重排,所合成出的肽链,还要再进一步进行L和H链组合,这样

麦氏重排

  麦氏重排(McLafferty rearrangement)是对质谱分析中离子的重排反应提出的经验规则,于1956年由美国质谱学家麦克拉弗蒂(F.W.Mclafferty) 提出。  重排机理  当有机化合物含有不饱和基团(如C=O、C=N、C=S、C=C),且与不饱和基团相连的γ 碳上有氢原子

我国学者在合成型基因组重排领域取得重大突破

           图1.精确控制合成型单倍体和二倍体酵母基因组重排图2.体外DNA重排图3.杂合二倍体与跨物种基因组重排  在国家自然科学基金项目(项目编号:21750001,21621004)等资助下,天津大学元英进教授带领的合成生物学研究团队开发了一系列原创的基因组重排技术和策略,

Cell公布最新基因组测序结果

  去年夏天西非埃博拉爆发的早期阶段,科学家们以空前的规模和速度测序了这种致命病毒的基因组,为人们揭示了许多疫情蔓延的关键信息,比如说病毒只通过人与人接触传播,病毒在多次传播中获得了许多新突变等等。  虽然埃博拉爆发最糟糕的时期已经过去,但这场疫情并未结束,还有许多问题需要人们去解答。为此,哈佛大学

Cell年度综述:癌症基因组入选

  Cell杂志创刊于1976年,现已成为世界自然科学研究领域最著名的期刊之一,并陆续发行了十几种姊妹刊,在各自专业领域里均占据着举足轻重的地位。近期Cell杂志盘点了2013年度最佳综述及最佳论文,其中热门技术CRISPR也登上了榜单,相关论文描述了利用基因调控系统 CRISPR/Cas,一步

麦氏重排的机理和常见重排有哪些

  麦氏重排(McLafferty rearrangement)是对质谱分析中离子的重排反应提出的经验规则,于1956年由美国质谱学家麦克拉弗蒂(F.W.Mclafferty) 提出。  当有机化合物含有不饱和基团(如C=O、C=N、C=S、C=C),且与不饱和基团相连的γ 碳上有氢原子时,γ 氢原

Cancer-Cell新文章指明肺癌精准治疗未来方向

  美国犹他大学的一项新研究发现小细胞肺癌可以再细分为不同的肿瘤亚型,他们还发现一个靶向药物组合对其中一种肿瘤亚型有很好的治疗效果。相关研究结果发表在国际学术期刊Cancer Cell上。这些结果表明不能将不同的小细胞肺癌当作同一种疾病进行治疗。  犹他大学的Trudy G. Oliver教授领导了

Nature,Science子刊:肺癌的基因组分类

  两项最新的研究显示,如何根据肿瘤的遗传结构来特别定制肺癌的治疗,这可能会最终改善现有的治疗方法,甚至有助于发现新的治疗方法。   第一项研究发表在Science Translational Medicine杂志上,研究者们发现了一种根据其遗传组成将肺癌肿瘤进行分类的方法,能够为一些患者治疗

基因组研究揭示复杂染色体重排或为子宫平滑肌瘤主因

  子宫平滑肌瘤是一种良性肿瘤,但影响着数百万女性的健康。对其分子机理的深入理解可为这种肿瘤的预防和治疗提供线索。芬兰肿瘤学会的Miika Mehine等人对此进行了研究,他们发现,一种与染色体破碎重组(Chromothripsis)很类似的复杂染色体重排是许多子宫平滑肌瘤染色体异常的主要原因。

Cell:肺癌治疗导致细胞转录组发生变化

  由加州大学旧金山分校领导的研究团队在治疗之前和治疗期间,从转移性肺癌患者中采集了样本,并利用单细胞RNA测序开展分析。通过20,000多个细胞的转录组图谱分析,他们揭开了丰富而动态的肿瘤生态系统。  肺癌是我国乃至全世界最常见的恶性肿瘤。根据国家癌症中心的统计,肺癌的发病率和死亡率均占据第一位。

Cell:癌症基因组计划再取重要成果

  来自德克萨斯大学MD安德森癌症中心的研究人员称,他们将最致命的皮肤癌类型——黑色素瘤分为了4个不同的基因亚型,这一研究发现有可能会在寻求个体化医疗领域体现它的价值。这项研究是癌症基因组图谱计划(TCGA)的一个组成部分,研究人员将他们的成果发布在6月18日的《细胞》(Cell)杂志上。  研究人

Cell新文章:癌症全基因组测序

  根据华盛顿大学医学院的一项新研究,具有吸烟史的肺癌患者相比于不吸烟的肺癌患者肿瘤中的遗传突变要多10倍。这一研究在线发表在9月13日的《细胞》(Cell)杂志上。   论文的资深作者、华盛顿大学基因组研究所主任Richard K. Wilson 说:“吸烟者基因组具有比不吸烟的肺癌患者基因